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Summary:  The paper presents ongoing work on the processing of visual information in 

distributed connectionist systems. It is demonstrated that such systems are able to meet 

all the requirements of syntactic and semantic systematicity. The described system 

represent thoughts of two different kinds of complexity which are called low-level 

thought and higher-level thought, respectively. Higher-level thought requires temporally 

sequenced, discrete output for its representation. Such output may provide a crucial link 

in the vision-to-language processing chain within modular cognitive architectures. The 

simulation includes a mechanism for changing focus of attention in distributed 

connectionist systems. Ulbæk did the simulation and Bernsen did most of the theory.   
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1. Introduction 
 
In a recent paper, we have demonstrated systematicity and compositionality in 
distributed connectionist networks working with "real", pre-linguistic semantic 
information (Bernsen and Ulbæk 1992). Systematicity and compositionality had 
been claimed to be unique to classical syntactic AI systems (Fodor and Pylyshyn 
1988). However, the capabilities  of distributed networks of generalisation, 
abstraction and instantiation are demonstrably sufficient to account for the fact that 
when a system is able to represent (or think) the perceived relational fact that aRb  it 
is necessarily also able to represent the fact that bRa. Through learning, the system 
acquires the abstract complex representation xRy  which it then applies to novel, 
perceived individual objects in order to determine if the relation R  holds between 
them. In the simulation, R  was the spatial relation "right of". This "right-of 
recogniser" was a simple backpropagation network with one hidden layer. It could 
easily be hooked up with a set of visual modules at one end and with a synthetic 
speech module at the other to constitute an artificial example of the full chain from 
vision to speech. However, doing so would have been cheating as far as the natural 
language processing part of the system is concerned, as will become apparent 
below. The work also demonstrated the need for a painstakingly accurate semantic 
analysis of the task that a distributed connectionist network is actually solving. Great 
care should be taken in order not to confuse our own semantic capabilities with that 
of the simulation being analysed.  
 
The present paper describes ongoing work on more advanced simulations using 
recurrent nets. The work addresses some fundamental questions about the 
representation of pre-linguistic complex thought dealing with perceived material in 
distributed connectionist systems. The first objective (1) was to address a final 
aspect of the systematicity (and compositionality) challenge to distributed 
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connectionism which was not addressed in our previous paper. However, the way 
this challenge was actually and, it is claimed, successfully met leads to two more 
general ideas. The theoretical discussion leads to the hypothesis (2) that complex 
thought itself is of at least two different kinds  in terms of processing and 
representational requirements. One class of complex thought can be handled by 
several existing types of  distributed connectionist systems whereas a second, 
"higher" class of complex thought can be handled only by systems capable of using 
a temporal dimension of representation. Low-level thought  consists essentially of 
distributed representations plus output representations of patterns. There is no need 
for a temporal dimension in the representation. The patterns can be rather complex 
such as the pattern that one spatial object is located to the right of another spatial 
object. But there are limits to the complexity of those patterns if we are to preserve 
the systematicity requirement, at least in the context of modular cognitive 
architectures. When the representation including the output representation has to 
include a temporal dimension, we speak of higher-level thought.  Finally (3), an idea 
is presented as to how goal structures determining focus of attention can be realised 
in distributed connectionist systems dealing with static visual information.   
 
It should be stressed that the entire argument of this paper rests on the attempt to 
solve concrete problems of semantic representation in distributed connectionist 
systems while preserving the systematicity (and compositionality) requirements. At 
some point when working on the issue of systematicity and compositionality, we 
have found ourselves forced into using temporal representations producing temporal 
and discrete output representations. If that is not necessary, the argument might fail, 
but there does not yet seem to be working alternatives in the literature. If that is  
necessary, on the other hand, the results are relevant to ongoing discussions on the 
hybrid character of cognitive architectures. One question then becomes whether the 
semantic distinction between two classes of complex thought lends plausibility to the 
idea that thought is itself hybrid in the sense that we have to acknowledge a kind of 
non-linguistic syntax in "higher" complex thought as realised through temporal and 
discrete output representations. In any case, the results suggest a principled 
solution to the problem of how to link up pre-linguistic thought with linguistic 
representation in distributed connectionism.  
 
 
2. A note on methodology 
 
The methodology adopted consists in (1) building minimal distributed connectionist 
systems which demonstrate basic principles of cognitive architectures. The systems 
are minimal in the sense that they work on tasks that are minimally simple for 
demonstration purposes. (2) The methodology is incremental in the sense that once 
a principle has been demonstrated in one simulation, a subsequent simulation does 
not necessarily have to repeat that demonstration if it can be safely assumed that a 
repetition lies within the power of the new system used. This, of course, may 
sometimes be a dangerous strategy and we have tried to be fully explicit about the 
shortcuts made. The systems (3) work with input which is assumed to be provided 
by visual modules in order to ensure that the simulations deal with undisputed 
semantical representations. Finally (4), we strongly adhere to the idea of the 
modularity of cognition. Even if distributed connectionism is on the right track in 
modelling cognition, it will have to involve a series of cognitive modules in order to 
cover, e.g., the chain from peripheral vision to language and reasoning. This implies 



 3 

that output representations of cognitive modules are just as important as what goes 
on in and between the hidden layers of a simulation. A cognitive module and what it 
represents is characterised by its input, hidden representations and output as well as 
by the processes operating on those representations. 
 
The whole enterprise is reminiscent of the early days of symbolic AI. In view of the 
many implicit assumptions needed to do anything at all, there is a clear risk of 
building monuments of individual imagination rather than solid science. It is some 
comfort, however, to be able to relate the simulations to behavioural laboratory 
experiments. 
 
 
3. Thoughts and other representations 
 
One conceptual point, or perhaps it is rather a question of terminology, should be 
addressed right away. Cognitive science more or less universally acknowledges 
representations. Cognitive systems internally represent external and sometimes also 
internal states of affairs. We shall be speaking of thoughts  in this paper without 
being able to offer any very precise distinction between thoughts and other 
representations. Thoughts are representations, but not all representations are 
thoughts. The working idea of a thought is the following: thoughts are internal 
representations of states of affairs to which we refer in explaining the actions of 
cognitive systems, and the kinds of thought that a cognitive system is capable of 
having help us characterise that system more generally. Cats have some kind of 
thoughts about the presence of mice. They may have thoughts about the absence of 
mice as well, but they don't have thoughts about nuclear energy or about protecting 
their eggs, and they equally don't have thoughts about their doing computations of 
zero-crossings in their visual system. Human beings may be capable of having 
thoughts about almost anything but, like cats, they don't have thoughts about their 
doing computations of zero-crossings in their visual system exept when theorising 
about the computational tasks of visual systems. In other words, the concept of 
thought may have a useful role to fill as designating significant output from cognitive 
processing modules used in explaining their actions at some relatively coarse level 
of detail. It may be useful, at least operationally, to conceive of thoughts as outputs 
from the distributed processing taking place in functionally significant cognitive 
modules. Obviously, thoughts don't have to be linguistic in any ordinary sense of the 
term.  
          

 

4. Two steps toward higher-level systematicity 

 
The system described in (Bernsen and Ulbæk 1992) masters various types of 
abstraction and generalisation by virtue of its ability to generalise right of(a,b)  to 
right of(x,y).  Thus, the system has learnt most of the (surprisingly rich) semantics of 
the general spatial relation right of  and has successfully generalised 
representations of particular objects standing in that relation to the general object 
representations x  and y. In a distributed connectionist mode of representation, it 
has learnt about variables and instantiation of those variables. However, whereas 
the system has learnt the concept of a  particular object which could be, e.g., a bar, 
a triangle or a square, it still has not learnt individual concepts  for bars, triangles or 
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squares. The system is not able to identify or recognise a particular object present in 
the visual scene as being, for instance, a square. This means that, when the system 
correctly identifies a right of  relation in the visual array or scene through 
instantiating its general concept right of(x,y)  to what it sees there, the system 
instantiates x  to some particular spatial object  and y  to some particular spatial 
object different from the first one  but without being able to identify the specific 
nature (or type) of those spatial objects. In other words, the system is able to 
represent the fact that two different spatial objects stand in the relation right of  to 
each other, but unable to represent the fact that the two objects are, say, a triangle 
and a square.  
 
One way of expressing this result is to say that the system masters low-level 
systematicity (to be coupled shortly  with the concept of low-level thought). In 
principle, given any two spatial objects, say, Paul and Mary, or Mary and Paul, or 
Mary and a chair, the system is able to determine whether the right-of relation holds 
between them. In doing so, the system has something like the thought (or intentional 
content) that some spatial object is (or is not) to the right of some other spatial 
object. However, the system is not able to think about the type-identities of the 
objects it perceives and thus does not have higher-level systematicity  (to be 
coupled shortly with the concept of higher-level thought). It may have been higher-
level systematicity that Fodor and Pylyshyn had in mind when they wrote their 1988-
paper, but they definitely overlooked low-level systematicity.  
 
The ability to identify and distinguish between types of particular object seems to be 
fundamental to biological systems solving such tasks as seeking food or prey. We 
would like to provide a distributed connectionist system with such a capability as a 
precondition of demonstrating that this system is capable of higher-level 
systematicity (or thought). Let us specify the system through a number of steps. 
 
1. The system works on a selection of different visual 2-D objects in the input array. 
For convenience, each object should have a name in natural language. Let the 
objects be a triangle and a square, respectively. Sometimes the variables a  and b  
will be used for brevity below in referring to those objects recognised by the system.  
 
Given this setup, the system should learn to associate the appropriate concepts with 
each of these objects. It does not seem necessary for the present purpose to teach 
the system the general concepts of triangles and squares although this can clearly 
be done (it was done to a reasonable approximation in the previous system). So one 
might say that the system learns to associate "proper name concepts" with the 
objects rather than learning the corresponding abstract concepts themselves. This 
does not matter at this stage since the important point is that the system becomes 
able to identify the different objects presented.  
 
The object-concept association should work for each object independently of its 
position in the input array. Whenever one of the objects are present somewhere in 
the scene, the system responds by telling us that the object is present.  
 
The system described so far is a single-object identifier.  At least two different output 
nodes are needed, one for each object. When one of the output nodes is active, the 
corresponding object should be somewhere in the input array. The system is 
assumed to work as an object identifier module on top of a set of visual modules 
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which have produced the scene whose objects are identified. We explicitly don't  say 
that the system learns language. What it learns is to recognise objects and hence to 
have thoughts to the effect that specific objects are present in the scene. 
Recognising objects requires concepts for those objects. We do not have to 
conceive of the system as having learnt linguistic names for objects. 
 
2. Now consider the case where several objects are present simultaneously in the 
scene. These should be correctly identified wherever they occur in the array. In such 
cases, their corresponding output nodes should become active. This would give us 
an object "noticer" and -identifier,  that is, a system which notices the presence of 
one or several objects in the scene and identifies them correctly. We may conceive 
of the system as one that has innate capabilities for paying attention to objects in a 
scene (rather than to what other information the scene makes available) and 
learning about their individual characteristics in order to recognise those objects 
whenever they re-appear in the scene. When it looks at the scene, the system pays 
attention to the individual objects present and recognises them.  
 
 
5. The hard step 
 
We now have the desired system with concepts of individual objects. Clearly, the 
system does have semantic representations (or thoughts) just like our right of(x,y)  
system had. However, in contrast to that system the new system does not yet have 
concepts about spatial relationships. We would like the new system to acquire such 
concepts. Let us again focus on the concept right of(x,y). 
 
Imagine that there is a square to the right of a triangle in the visual array. So far, the 
system is merely able to realise that the array contains a triangle and a square. How 
might the system learn to recognise the right of-relationship between these two 
specific objects? We will not consider this time the handling of right of-relationships 
in situations where more than two objects are present in the scene. This was done in 
the previous system and the current neglect of this task means that the new system 
has a weaker understanding of the semantics of right of(x,y). However, this does not 
matter for present purposes. 
 
Since we have done it before, we assume that it will be possible for the system to 
learn to recognise that the general right of-relationship right of(x,y)  obtains between 
objects in the scene. For this to be the case, an output node would have to be 
added to the system which fires if and only if there is a right of-relationship between 
the objects in the visual array. If the square is to the right of the triangle, the 
following nodes would become simultaneously active: the triangle node, the square 
node and the right of node. The same happens if the triangle is to the right of the 
square.  
 
This, of course, is not sufficient for the system to distinguish between the two 
different situations in which a is to the right of b and b is to the right of a. For very 
good reason, Fodor and Pylyshyn (1988) leaned heavily on this point in their 
argument against connectionism as a general architecture for cognition. Since our 
previous refutation of their argument concerning systematicity and compositionality 
dealt with low-level systematicity, that paper did not consider the current issue which 
is to do with higher-level systematicity. So, assuming the feasibility of the (three) 
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steps already described, we face the following situation: the system is able to 
represent the facts that two objects are present in the visual field and that right of-
ness is present in the visual field. Such a system has complex thoughts (i.e., right 
of(x,y) ), low-level representational systematicity and semantic compositionality. But 
it still lacks the ability to represent ordered spatial relationships between specific 
individual objects or types of such objects. The system has some thoughts but lacks 
others. What it lacks might  be something which a cat does have. A cat is very likely 
in a laboratory experiment to be able to distinguish between the patternsaRb  and 
bRa, where R  is the relation right of.  What may be less clear is whether the cat 
does this through representing the ordered right of-ness relationship or in simpler 
ways. For instance, it might be sufficient for the cat to make sure that a is closest to 
something else in the scene  (e.g., to some static part of the laboratory setup) or that 
a is closest to something else in the scene and b is present  in order to obtain, e.g., 
food rather than nothing or even electrical shock. In other words, it may not yet be 
clear from behavioural experiments at this point whether infralinguistic creatures can 
have thoughts about the ordered right of-ness relationship between a and b. The 
acid test is whether such creatures can provide us with behavioural output which 
offers convincing evidence. Obtaining this might turn out to be more difficult than 
expected once the semantic intricacies involved are taken into consideration. 
 
Like so many other relational thoughts, the thought that a is to the right of b  has an 
asymmetrical trajector-landmark structure (Langacker 1987, Bernsen and Ulbæk 
1992). In a is to the right of b, a is the trajector and b is the landmark. In b is to the 
right of a, b is the trajector and a is the landmark. A system which learns the right of- 
relation learns the difference between these two thoughts without explicitly learning 
anything about trajector-landmark structure. What the system learns is to recognise 
situations in which a is to the right of b as being characteristically different from, but 
structurally (or systematically) similar to, situations in which b is to the right of a. We 
want an output from the system which unambiguously tells us which of these two 
right of-relations hold in the scene. Moreover, the output of the system should 
demonstrate higher-level systematicity based on distributed representations. Finally, 
the system should be compatible with a modular cognitive architecture capable of 
exemplifying the chain linking vision with natural language. So it won't do simply to 
have one output node firing when a is to the right of b and a different output node 
firing when b is to the right of a. This solution, which is certainly feasible, would 
imply loosing systematicity on the output side with concurrent loss of the possibility 
of feeding systematic output into subsequent natural language processing modules. 
 
 
6. One possible solution 
 
A possible solution is the following. Recognising the fact which we loosely describe 
as "a is to the right of b" can actually be done through having (at least) two different 
thoughts. The first thought is the one the system has when it simply realises that the 
right of-ness relation obtains between two objects in the scene. That is, the system 
realises that the abstract relation right of(x,y)  is instantiated in the scene: there is 
right of-ness, there are two and only two objects involved in that relation, their 
identities may be known, but their ordering in the right of-ness relationship is not 
known. Let us require, in that case, that a specific right of-node becomes active. The 
second thought is the one the system has when it realises which  object is to the 
right of which other object in cases where the abstract relation right of(x,y)  is 
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instantiated in the scene. Now assume that, in order to represent this second 
thought, the system uses temporality in its internal representation.  The system now 
literally represents the right-most object before  representing the left-most object in 
its output. This mode of representation requires a shift to the temporal domain. 
Simply thinking that right of-ness holds in the scene is an atemporal activity or an 
activity which, although it may be temporally extended, does not necessarily involve 
a specific temporal sequencing of representations whereas thinking that an 
identified object is to the right of a second identified object is a temporally 
sequenced activity.  
 
Empirically, it does seem to be the case that we can think or realise that there is a 
right of-ness relationship in a scene without thinking that this right of-ness relation 
involves, e.g., the two specific objects a triangle and a square. For instance, we may 
not be in a position to be able to identify the perceived objects. Possibly, some 
animals can think the first but not the second when provided with the visual input 
which allows humans to think both.   
 
This would mean that in order to represent a is to the right of b -right of-ness  so as 
to satisfy the systematicity and modularity constraints, we need temporality in the 
output domain. The system should produce a temporally sequenced output string to 
represent what it sees. How can this be done ? 
 
One possibility is to have an associative process from the spatial to the temporal 
domain. We require that the spatial pattern which we describe as "a is to the right of 
b" associate with the temporal pattern: "a" followed by  "right of" followed by "b". We 
also require that the spatial pattern which we describe as "b is to the right of a" 
associate with the temporal pattern: "b" followed by "right of" followed by "a", and so 
on for arbitrary individual object combinations recognised by the system. The 
additional requirement is needed to guarantee higher-level output systematicity and 
semantic compositionality in the system. If the system were also able to handle 
other spatial relations such as aboveness, it would do so by again using temporal 
output sequencing but this time involving a different output node representing 
above(x,y). 
 
 
7. An unexpected problem 

 
In working on the first version of such a system with higher-level systematicity in its 
representations, we came across the following problem. Even a static visual array 
containing nothing but a triangle and a square is incredibly information-rich. There 
does not seem to be any in-principle limitations to the number of logically and 
semantically irreducible descriptions we can make of this array using natural 
language. The same, therefore, is presumably true of the number of non-linguistic 
thoughts a system might have concerning the information present in the array. The 
problem now is that all this information is present in one and the same visual array. 
So if a system is not able somehow to select which information it wants to pick up, it 
will never get started picking up information. This may not be a problem for systems 
which are hard-wired to picking up only specific types of information while ignoring 
others and which have some way of ordering their pick-up of information in those 
cases where several "affordances" are present. Biological systems are such 
systems, but ours isn't yet. Since the information that, e.g., the triangle is to the right 
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of the square is only present in the visual array if and only if the information that a 
triangle and a square are present, and since the system has no hard-wiring which 
allows it to somehow order its handling of the information, it cannot in its present 
form perform both of the two desired tasks. If it tried, it would inevitably act as an 
organism which is hard-wired to picking up only one of those types of information.  
 
The system therefore is clearly missing a capability for selective attention or 
focusing  which would allow it to shift its attention from looking for one type of 
information (e.g., whether both a and b are present in the scene) to looking for 
another type of information (e.g., whether a is to the right of b or b is to the right of 
a). Biological recognisers and identifiers which are able to do that, it seems, must do 
so through receiving information from somewhere else in the cognitive architecture 
telling them what to look for, focus on or pay attention to in a static scene. If that is 
true, the way to equip connectionist systems with selective attention vis-à-vis static 
scenes is to provide them with such additional information structures which allow 
them to shift their attention to different types of information in, e.g., the visual array. 
So we are looking for a way to represent goal structures in distributed connectionist 
systems determining their focus of attention. How this was done is described in the 
next section which presents the simulation.  
 
 
8. A distributed connectionist system with higher-level thoughts 

 
The simulation used the network Tlearn (due to Jeff Elman, UCSD). When the network is in 

recurrent mode there is a "copy layer" in addition to the hidden layer. The copy layer is used to 

copy the activity of the hidden layer at time t1. At time t2 the activity of the hidden layer at t1 

is fed back into the hidden layer from the copy layer. In this way the network is sensitive to 

earlier input activity and is able to produce dynamic, temporally discrete output based on static 

input.  

 

The network was required to: 

 

- identify object a wherever it occurs in the scene; 

 

- identify object b wherever it occurs in the scene; 

 

- identify objects a and b wherever they occur in the scene and  independently of specifying 

their spatial relationship. However, a  simplifying constraint was imposed in order to 

limit vector space  complexity so that a and b always occur with a fixed distance 

 between them; 

 

- identify or recognise the facts that a is to the right of b and b is to  the right of a 

wherever they occur in the scene. Again, the  simplifying constraint was imposed that a 

and b always occur  with a fixed distance between them; 

 

Objects a and b are two significantly different 2-D spatial objects. 

 

To solve the focus of attention problem, extra units were added to the input layer. When these 

units are turned on, the task of the network becomes that of thinking which of the two spatial 

relations hold: a is to the right of b  or b is to the right of a.  When these units are turned off, 

the task of the network becomes that of thinking whether a and b are present. We take the 
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on/off distinction characterising the extra input nodes as representing the distinction between 

two different internal goal states of the network allowing its attention to change from looking 

a the scene in one way into looking at it in a different way. 

 

The input scene is a two-dimensional array consisting of 10 times 10 units with 3 extra units 

added for signaling changes of attention. Overall, the network has 103 input units, 100 hidden 

units, 100 copy units (the context layer) and 2 output units. The training was run with a 

learning rate of 0.3 and a momentum rate of 0.9. 

 

Each static input scene is presented in two consecutive time slices. It is the output which is 

time dependent or coded serially. The coding for the presence of, e.g., a anywhere in the scene 

is: 

 

t1: 1 0 

t2: 0 0 

 

Coding for a and b (and b and a) is: 

 

t1: 1 1 

t2: 0 0 

 

Coding for b is to the right of a is: 

 

t1: 0 1 

t2: 1 0 

 

Coding for a is to the right of b is: 

 

t1: 1 0 

t2: 0 1 

 

In the current simulation, no output node was introduced for expressing the right of(x,y)  

relation. Since the network just recognises one kind of spatial relation, such an extra output 

node is unnecessary. If the network is to recognise more than one kind of spatial relation (e.g., 

above(x,y)  as well), units identifying the type of spatial relationship currently attended to will 

have to be introduced. 

 

The training set consisted of the exhaustive set of all possible combinations of a, b, a and b, a 

is to the right of b, and b is to the right of a anywhere in the scene. The simplification noted 

above was that a and b, when occurring together, were always two units apart. Another 

simplification noted earlier and evident from the setup as presented, was that the network this 

time was not required to generalise to spatial object(x)  and right of(x,y).   

 

The input consisted of 512 time sequences (256 different scenes) and the network was trained 

for 900.000 epochs. The network converged nicely according to the error samples made for 

every 50.000 epochs. After 100.000 epochs the error measure (the total sum of squares) was 

0.002 and after 900.000 epochs it was 0.0008. The objective was to verify that the network 

actually converged rather than to make this happen quickly and efficiently. Convergence was 

actually very slow. 
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9. Discussion 
 
The simulation whose background and implementation has been described above 
has a number of implications. One is that the ability to think that, e.g., a is to the 
right of b, is of a rather sophisticated nature. It involves temporality of output 
representation and discreteness of what is represented there, that is, it involves a 
temporal sequence of discrete output representations.  And obviously, if temporal 
and discrete output representation is required then this has to be reflected in the 
nature of the system's hidden, internal distributed representations. It is apparently 
much simpler to think that a is present in the visual field, or that a and b are present 
(conjunction being symmetrical), or that right of-ness holds between two non-specific 
individual objects than it is to think that a is to the right of b. It might be that many 
lower animals are able to represent the former states of affairs and all those other 
states of affairs which pose similar processing requirements without being able to 
represent, e.g., that a is to the right of b and all those other states of affairs which 
pose similar processing requirements. The hypothesis therefore is that low-level 
thought merely requires static or at most temporally un-ordered, discrete output 
representations from the relevant cognitive modules whereas higher-level thought 
requires temporal and discrete output representations from the relevant cognitive 
modules. 
 
Again, this hypothesis is not about linguistic representation. Both the linguistic 
representation that a is present in the scene and the linguistic representation that a 
is to the right of b  may be temporally sequenced and discrete. But it does not follow 
that a cognitive architecture representing one or the other of these two facts needs 
the same processing apparatus to do so in both cases. 
 
Imagine a static scene with two objects in it, a triangle and a square, the square 
being somewhere to the right of the triangle, and the scene being framed by the 
borders of the visual array. Even this very simple scene contains a wealth of 
information which we are perfectly able to describe in some natural language. For 
instance, the square is to the right of the triangle, the triangle is to the left of the 
square, the triangle is a triangle, there are two objects in the scene, the square, the 
triangle and the scene each have a number of 2-D geometrical properties, the 
triangle is located at a specific place in the scene having specific relations to the 
borders of the array, the square is close to the triangle, the borders of the array are 
straight lines, the rest of the scene is empty, and so on. On some specific occasion 
we may just look at (or imagine) the scene without extracting any particular piece of 
information from it and thus without having any specific thoughts about it. And even 
if we do extract some information, we surely cannot extract all of the information 
present in the scene at once. Extracting increasingly more of the information present 
is a temporally extended process. This process requires shifts of attention. So 
modelling this process requires the modelling of attention and shifts of attention.  
 
Suppose that animals and infants automatically focus their attention on some 
aspects of a static scene and not others. Their attention is caught by these aspects 
for some reason. They may have innate pattern matching capabilities which become 
activated once particular objects and properties are present. An infant may look at 
the scene and what it sees as a result of inborn pattern matching capabilities and 
the resulting focusing of attention is a configuration of objects. The infant may have 
learnt to recognise those objects. In random order, the infant recognises first one 
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object and then a second object. It may also realise that the distribution of the 
objects in the scene forms a spatial pattern which it is able to recognise. When does 
the infant have thoughts  about the scene ? A sensible suggestion is that the infant 
has thoughts once its pattern matching capabilities are operating on the scene in 
order to extract information such as the information just described (cf. the 
Introduction above). Once it extracts such information from the scene, it thinks. The 
infant does not need language in order to think. It thinks of what it notices or pays 
attention to, and that, again, is a function of its pattern matching capabilities.  
 
Now suppose that some of the information in the scene is more complex than the 
rest in the following sense: in order to pick up and represent that information, a 
perceiver needs more complex representational capabilities. Representation of 
some of the information in the scene may be possible without the system's having 
the ability to create a temporal sequence of discrete representations whereas the 
representation of other information does require this ability. In principle, at least, this 
difference should be measurable in performance: when a system cannot possibly 
represent a piece of information, it cannot possibly achieve discriminative learning 
which presupposes the capability of representing such information. This leads to the 
question: is there, on empirical grounds, a distinction to be made between animals 
which can learn the simple types of information described above but are unable to 
learn the complex information described, and animals which can learn both ? Are 
there animals whose representational capabilities include low-level systematicity but 
not higher-level systematicity ? Of course, there may be no such animals or they 
may be so primitive that discriminative learning experiments are impossible to 
conduct.  
 
A corollary of the above assumption is that the capability to represent the simpler of 
the types of information described and hence of low-level thought is basic to the 
capability to represent the more complex types of information and hence of higher-
level thought.  For instance, a system cannot represent the fact that a is to the right 
of b without being able, as a computational mechanism, to represent the fact that a 
and b are both present in the visual scene.  
 
Another consequence is that the notion of a "pattern" is ambiguous. There are 
patterns and patterns, even in a simple, static spatial scene. In order to be able to 
identify patterns in a spatial scene it is not sufficient to have a "pattern matcher" 
since the type of pattern to be identified has to be specified first.  
 
It is an interesting question whether and to what extent, if the hypothesis presented 
above is "the only game in town", the ability to produce as output a temporal 
sequence of discrete representations as a precondition for representing structurally 
complex states of affairs provides evidence, albeit within a thoroughly distributed 
connectionist framework, for the Language of Thought hypothesis (Fodor 1975). 
This question goes beyond the scope of the present paper. But if the hypothesis 
does provide such evidence, then the distinction between the class of (syntactically 
structured) thoughts which the Language of Thought hypothesis is required to 
account for and the class of thoughts for an account of which this hypothesis is not 
required is intra-semantical. The distinction is one between two classes of thought or 
internal representation, namely low-level thoughts and higher-level thoughts, 
respectively, rather than a distinction between what is non-semantical and merely 



 12 

implementational, on the one hand, and what is semantical and representational, on 
the other, as claimed by Fodor and Pylyshyn (1988).  
 
Both simple and complex thoughts as described above would seem to lend 
themselves directly to association with linguistic items. The output of the described 
connectionist system can act as input to linguistic processing modules. The type of 
thought characterised by higher-level systematicity would seem to lend itself to 
being matched with linguistic syntax. Its temporal structure can be seen to be 
equivalent to the predicate-argument structure of standard logic. However, there is 
nothing in this to indicate that the temporally structured discrete outputs from 
distributed connectionist cognitive modules are subject to the representational and 
computational inadequacies of current systems of formal logic. But whereas those 
outputs may not be fully representable in systems of formal logic, they may be fully 
representable in natural language. When those outputs serve as input to natural 
language processing modules, their discrete temporal ordering might be 
transformed into the temporal ordering of words and phrases according to the 
grammar of some specific natural language.  
 
 
10. Perspectives 

 
What has been said above seems compatible with the following modular cognitive 
architecture of the vision-to-language chain: 
 
1. Visual image:  A static visual scene becomes represented through a set of visual 
modules. This representation normally contains a wealth of information about 
objects and relations. We are on reasonably safe grounds with respect to this point 
since we have a clear idea about what should be the final output of vision, namely a 
visual scene which normally has some structure to it. It is what the visual "channel" 
allows us to see when we open our eyes. Whether and how the scene 
representation can be produced using distributed connectionist techniques is a very 
different matter.  
 
2. Thought:  Attention becomes focused on a subset of the information in the scene. 
This information is extracted using various cognitive mechanisms such as those 
described above with the result that the system has thoughts about information 
present in the scene. These thoughts are of at least two general kinds, i.e., low-level 
thoughts that do not need a temporally sequenced representation and higher-level 
thoughts that do need a temporally sequenced representation. This was the 
theoretical suggestion above. A simple mechanism for handling shifts in focus of 
attention was presented and implemented in the simulation. 
 
3. Linguistic processing of thoughts:  The thoughts, once created, may serve as 
inputs to a language-producing module (or a set of such modules). Here, distributed 
connectionism is on safer ground than in the case of vision. It is known that 
distributed connectionist systems using non-symbolic microfeatural representations 
can exhibit (non-classical, non-syntactic) compositional structure which can be 
manipulated by structure sensitive operations once they are fed with spatially or 
temporally structured, discrete linguistic material. Such input can come from the 
reading of written words and sentences and possibly also from listening to spoken 
language (although connectionist systems still perform rather badly in speech 
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recognition). Reading has temporal structure and written words and sentences have 
discrete spatial structure (Sharkey 1991). Non-symbolic microfeatures are different 
from symbolic microfeatures in that they are individual elements that are not 
semantically interpretable without participating in further processing (Hinton 1981). 
For instance, discrete spatio-temporal input structure can be processed by simple 
recurrent nets like the one described above using memory for previous input 
information to be combined with the current input information through a feedback 
loop. Such nets can represent abstract grammatical structure (Elman 1989). They 
are "functionally compositional" (van Gelder 1990). This means that they offer 
general, effective and reliable processes for (a) producing an expression given its 
constituents, and (b) decomposing the expression back into those constituents. The 
representation therefore, though seemingly unstructured, carries structural 
information. And the representation allows structure sensitive operations such as 
passivisation to be performed without recourse to discrete representations 
(Chalmers 1990).  
 
Or, much more simply, a thought like "the triangle is to the right of the square", and 
assuming that it has been discretised and temporalised as described above, may 
become associated with the appropriate English words and uttered as synthetic 
speech lacking somewhat in proper English syntax. Since the thought itself already 
has discrete order and semantic interpretation, it does not need further 
transformations. Chalmers' ideas might be used to apply structure sensitive 
processes to the thought in order to infer, e.g., that "the square is to the left of the 
triangle". 
 
4. Language understanding:  Finally, mechanisms are needed which take temporal 
sequences of words as input and produce either (a) structure sensitive inferential 
operations as just mentioned, or (b)visual mental models of the linguistic input. In 
case (a) the system needs, first, to transform a sequence of words into a thought. 
This is the reverse of the process described above. Second, the system has to 
perform structure sensitive operations on the thought in order to produce a new 
thought. In case (b) the system needs, first, to transform a sequence of words into a 
thought. Second, the system has to use the thought as input to the module which 
produces focused representations of visual scenes in order to create a focused 
visual scene which corresponds to the thought. Again, this is the reverse of the 
process described above. 
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