NICE project (IST-2001-35293)

Natural | nteractive Communication for
Edutainment

NICE Deliverable D3.6

Multimodal I nput Understanding Module for
the First Prototype

17 October 2003
Authors

Limsi-Cnrs. Jean-Claude Martin, Sarkis Abrilian, Stéphanie Buisine
Teliasonera: Joakim Gustafson, Johan Boye
NISLab: Manish Mehta, Andrea Corradini, Niels Ole Bernsen
Liquid Media AB: Morgan Fredriksson

Project ref. no.

| ST-2001-35293

Project acronym NICE
Deliverable status Restricted
Contractual date of 1 September 2003
delivery

Actual date of 17 October 2003
delivery

Deliverable number D3.6

Deliverabletitle Multimodal input understanding module for the first prototype
Nature Report

Status & version Final

Number of pages 33

WP contributing WP3

tothedeliverable

WP/ Task LIMSI-CNRS

responsible

Editor Jean-Claude Martin

Author (s) Jean-Claude Martin, Sarkis Abrilian, Joakim Gustafson, Johan

Boye, Andrea Corradini, Morgan Fredriksson, Niels Ole Bernsen,
Stéphanie Buising, Manish Mehta

EC Project Officer

Mats Ljungqvist

Keywords

Multimodal input, fusion, gesture recognition,

interpretation, reference resolution

gesture

Abstract (for
dissemination)

The NICE system aims at enabling a user to interact with
characters, objects and environment of a game application via
speech combined with 2D gestures achieved with a tactile screen
or a pen. This deliverable describes the Input Fusion module
which will be used in the 1% NICE prototype for merging the
semantic representations generated by the Gesture Interpretation
module (Gl described in D3.4) and the Natura Language
Understanding module (NLU described in D3.5) and for sending
the fusion results to the Character and Dialogue Manager modules
(D5.1aand b).

Table of Contents

1
2
3
4
5
6
7

gL 8 oo 18 Tox o] o 1TSS 1
Requirement specifications for the Input Fusion module..........cccecevevevieciecececcece s 1
Updated system ar chitectur e of the first prototype......cccocvevrerennenenenersere s 4
I nteractions between the Input Fusion module and the other modules.......................... 11
The TYCOON technology used within the IF module...........ccccoininnniinneincneeceneee 17
REFEI BNCES......o et ettt b e bt b bt b b ettt ne b s 22

1 Introduction

1.1 Definitionsand scope

The NICE system aims at enabling a user to interact with characters, objects and environment of
a game application via speech combined with 2D gestures achieved with atactile screen or a pen.
This deliverable describes the Input Fusion module which will be used in the 1¥ NICE prototype
for merging the semantic representations generated by the Gesture Interpretation module (Gl
described in D3.4) and the Natural Language Understanding module (NLU described in D3.5)
and for sending the fusion results to the Character and Dialogue Manager modules (D5.1a and b).

1.2 Structure

This deliverable follows the following structure:
Requirement specifications for the Input Fusion module
Updated system architecture of the first prototype
I nteractions between the Input Fusion module and the other modules

Description of the TY COON technology used within the Input Fusion module

2 Requirement specificationsfor the I nput Fuson module

We have not found in the literature any observations of multimodal behaviour of users when
interacting with 3D characters using speech and gestures achieved via a 2D media in a
conversational game application. Thus, it is not possible to know in advance the exact patterns of
multimodal behaviour that will be displayed by users before the testing of the 1% prototype. In
this section, we will thus refer to the literature on users’ multimodal behaviour (see [Martin et al.
98] for a survey), previous experimental studies on a multimodal map application in which we
were involved [Kehler et al. 1998]) and to the results of LIMSI 2D Wizard of Oz (WQOZ)
experiment achieved at the beginning of the NICE project with a similar but simplified simulated
2D conversational game [Buisine et al. 2003].

2.1 Enableswitching behaviours/ equivalent use of different modalities

A single user might switch between different modalities when activating the same command. For
example he would once use gesture-only to move an object and later use speech-only to move
another object. The Input Fusion module should thus enable such an “equivalent” access to such
commands via several modalities.

2.2 Improve monomodal processing and contextual predictions when users
display specialised behaviour

Users might always (or very often) use the same modality for a given command. For example
they might always use the gesture modality to open a door and seldom use speech. The models
used by the speech recogniser and the gesture interpreter should include such knowledge asit can

be used to improve monomodal recognition (e.g. some commands do not need to be recognised
by speech or at least not very often).

2.3 Takeinto account inter-individual differences

The experiments with the early simulated 2D system [Buisine et al. 2003] showed that one might
expect inter-individual differences. children gestured more than adults (Figure 1) and display
exploring gestures (e.g. the pen moves around with cursor feedback but without touching the
screen). Some users might be more redundant than others, while some other users might prefer
the use of speech only [Kheler et al. 1998]. The behaviour model on which the Input Fusion
module is to be designed should take into account these differences either within a single user
model or with concurrent user models (e.g. one multimodal specification file for children and
another one for adult users).

16 1
14 1
12 1

10 - @ Children
O Adults

use number
[oe]
Il

0 |

Speech Input Pen Multimodal Input

Figure 1. Mean use number of each modality for the “get into a room” command as a
function of the subjects age [Buisine et al. 2003]

2.4 Expect ambiguous behaviour in each modality / enable mutual
disambiguation between modalities

In intuitive Human-Computer interfaces, the user might display ambiguous behaviour in his
gestural and spoken behaviour. For example, she might not always point right in the middle of an
object but instead gesture between two objects (Figure 2) or she might circle several objects with
asingle gesture.

T RlIE e
fetunielait

;|: =

n

Figure 2. Example of an ambiguous gesture in a multimodal map application. The user
gestured between a museum object (yellow rectangle above) and a restaur ant object (purple
triangle below).

She might also in her spoken behaviour refer to an object at different levels of precision: in a
multimodal map application [Martin et al. 1998], she might refer to the “Orsay Museum” object
by saying “it”, “this building”, “this museum”, or “the Orsay museum”.

She might display different multimodal patterns [Siroux et al. 1997]:

Syntactically correct sentences requiring fusion of spoken and gestural events:
“Isthere any picturesin thisbook” + <gesture near the red book>

Syntactically incorrect sentences requiring fusion of complementary spoken and gestura
events.
“Isthere any picturesin” + <gesture near the red book>

Syntactically correct sentences requiring fusion of redundant spoken and gestural events:
“Isthere any picturesin the red book” + <gesture near the red book>

One could also expect meta-communication regarding multimodal communication (e.g. “Can you
open the book that | circled”).

The input fusion module has to enable cooperation between modalities in order to ensure mutual
disambiguation (e.g. combining “this museum” with the gesture displayed above should lead to
the selection of the Orsay museum object which is above). The input fusion module should also
enable developers to assign different confidence weight to different modalities to solve conflict
cases and to manage misrecognised or missing events.

25 Use several criteria for driving the fusion process including temporal
proximity

Temporal proximity was one of the first criteria to be used in multimodal interfaces (i.e. events
occurring in the same time window should be merged). Various patterns were observed
depending on the media used for gesture, the type of application or the level of detail of the
temporal analysis:

[Oviatt et al. 1997]: pen (writing, drawing) often before speech
[Mignot and Carbonell 1996]: no obvious systematic temporal relation
[Catinis et al. 1995]: temporal coincidence often observed

Although this is a very useful criterion for driving the fusion process, considering only this
possibility might lead to problems:

Occasionally, the user might gesture and speak for two independent tasks (e.g. moving an
object with gesture while asking the removal of another object with speech [Mignot and
Carbonell 1996]), or the user might anticipate the system’s response and start a new
command before that the previous command is executed by the system.

The length of the temporal window might be different within different user groups, or
within asingle user.

The input fusion module should take into account different processing time in different
modalities (e.g. the user might speak and then gesture while the gesture would be
recognised by the gesture interpreter before that the utterance is understood by the Natural
Language Understanding module).

The user may speak (e.g. “take that one™), then hesitate, and then gesture.

2.6 Expect conversational like multimodal dialogues

In the preliminary 2D WOZ, we observed conversational multimodal patterns such as the
following one: before actually taking an object using gesture, some users would ask permission
by speech before hand. Such patterns of multimodal dialogue should be used by both the input
fusion module and the dialogue modul es.

2.7 Softwareissues

An input fusion system has to be easily integrated within a global architecture composed of
modality specific modules developed by different partners. New observed patterns of multimodal
behaviours occurring during user tests should be easily added. Such combination of modalities
should thus be specified in a separated text file instead of being hard-coded in the software.

3 Updated system architecture of thefirst prototype

The Input Fusion module has a central position in the architecture since it receives input from the
Natural Language Understanding and Gesture Interpreter modules and send fusion results to
Character and Dialogue modules.

This section introduces the system architecture and outlines the servers of the first prototype. The
NICE system will involve a number of embodied conversational fairytale characters (in the first
prototype there will be two scenarios with only one character in each, HC Andersen in his study
or Cloddy Hans by the fairytale machine). To make the animated characters appear lifelike, they
have to be autonomous, i.e. they must do things even when the user is not interacting with them.
At the same time they have to be reactive and show conversational abilities when the user is
interacting with them. To build a system that is both autonomous and reactive at the same time
has led to the choice of the event driven, asynchronous system architecture that is shown in figure
3. There are a number of serversin the system:

- Automatic Speech Recognition

- Graphical Recognition

- Natura Language Understanding
- Graphical Interpretation

- Input Fusion

- Diaogue Management (context interpretation and response generation)

- Surface Generation (verbal and non-verbal character actions as well as graphical events)
- Speech Synthesis (speech generation as well as time calculations for animation tags)

- Animation (character animation and virtual world simulation)

- Message Dispatcher (low-level socket handling and high-level message passing rules)
The servers are shown in figure 3:

NLU GI IF CF
Server Server Server

y A A

A A

Message Dispatcher
ASR inputTurnID
Server | ¢—— outputTurnID _
speechFragmentID Dialogue
gesturalSegmenttID < Server
clock
GR » inputTurnXML
Server |[¢— outputTurnXML
Message passing rules
A y y
A A A
. . Speech Surface
Animation - ;
Server Synthesis Generation
Server Server

Figure 3. The system ar chitectur e of thefirst prototype.

Since the dialogue system components are written at different sites and in different programming
languages we have chosen a modular architecture, where modules communicate via central
Message Dispatching server, and where all messages are sent in text form over a TCP/IP socket.
The Message Dispatcher has two parts:

1) A low-level Broker part that handles the hand shaking and message routing on the TCP/IP
socket level.

2) A higher-level Message Dispatcher part that handles the information flow and timings in
the system

Since the low-level Broker part has a very basic functionality independent of the typology and
information flow in the system architecture, we have chosen to use a publicly available Broker
system developed at KTH (http://www.speech.kth.se/broker). There are two advantages with this
package:
1) it does not impose a specific system architecture, but simply handles the socket
communication and message routing

2) there are brokerClient packages in Javalct+/icl/perl/prolog that simplify the
implementation of message handling in the dialogue component modules

5

An advantage of routing al messages through a central server isthat it makesit possible to log al
events in the system, and even replay interactions afterwards to evaluate the system behaviour.
This will be a useful tool in the analysis the system performance (both as a whole and the
individual system components) that will form the foundation for the iterative system devel opment
and improvements.

The high-level part of the Message Dispatcher gives the system an event-driven information
flow, where the communication between the servers is coordinated by the Message Dispatcher.
All messages are asynchronous, i.e. the sending module sends the message and proceeds to its
next task without waiting for an answer. The Message Dispatcher is responsible for coordinating
input and output events in the system, by time-stamping all messages from the various modules,
aswell as associating them to a certain dialogue turn.

There are many definitions of the term turn. [Allwood 1995] defines it as a speaker’s right to the
floor, and that this right is regulated by a number of turn management sub-functions that can be
expressed verbally or non-verbally. Some of the sub-functions he lists are: means for assigning
turns, means for accepting turns, means for taking the turn, means for holding the turn and means
for yielding the turn. According to [Sacks et a 1974], turns are composed by smaller units called
Turn Construction Units (TCUS), that end in positions where it possible but not obligatory to take
the turn (Transition Relevance Places, TRPs). [Traum and Heeman 1997] use a related term that
they call utterance unit. They list anumber of definitions from the literature for utterance units: is
uninterrupted speech by a single speaker, has syntactic and/or semantic completion, defines a
single speech act, is an intonational phrase, are separated by pauses.

We will define the user turn as all multimodal contributions from the speaker until the system
actively takes the turn. The system will decide, using an extension of the method described in
[Bell et al 2001], when to take the turn by using pauses, syntax, semantics and discourse history.
In the first prototype it will not use intonational cues, but it might be used in the second prototype
of the system. This means that a turn, according to our definition, can contain both multiple
fragments (i.e. inserted silent pauses) and multiple speech acts (e.g. “good, now put it in
dangerous’).

The behaviour of the Message Dispatcher is controlled by a set of simple rules, specifying how to
react when receiving a message of a certain type from one the modules. Since the Message
Dispatcher is connected both to the input channels and the output modalities, it can increase the
system’s responsiveness by giving fast but simple feedback on input events (for example by
sending a request for a eyebrow raise animation to the Animation System as soon as it receives a
StartOf Speech event from the ASR Module). The Message Dispatcher can aso increase the
system stability using timeouts. For example, if it has sent an ASR string to the NLU and has not
received a NLU event within one second, it can take certain actions. Lastly, the architecture
above is very modular, in the sense new modules can be added without having to change the
previous modules. For example if we would like to add a topic predictor that can use both the
ASR string and the NLU analysis, neither the ASR module nor the NLU module have to be
updated with information on where to send their results, as all communication goes via the
Message Dispatcher.

The messages from the Dialogue Component Modules to the Message Dispatcher are shown in
table 1. The resulting action carried out by the Message Dispatcher is shown in the right column.

Table 1. Some of the simple message passing rulesin the M essage Dispatcher.

Sender Message Action
ASR <SpeechDet ect ed/ > |SEND <EyebrowRai se/> to the Aninmation
ASR <resul t> SEND <Nod/> to the Aninmation
<asr XM_> | NCREASE t he speechFragnent| D
</result> ADD asr XM. as fragment in the current inputTurnXM
SEND t he input TurnXM. to the NLU
SEND | i sten and the ASRgrammar to the ASR
NLU <resul t> UPDATE i nput TurnXM. wi t h nl uXML
<nl uXm.> I'F gi XM. enpty SEND i nput TurnXM. to the DM
</result> ELSE SEND i nput TurnXM. to the IF
&R <Gest ureDet ect ed/ > | SEND <EyebrowRai se/ > to Ani mati on
R <resul t> | NCREASE gr aphi cal Segnent | D
<gr Xm.> ADD gr XML as segnent in the current inputTurnXM
</result> SEND the input TurnXM. to the @
SEND listen to the GR
€] <resul t> UPDATE t he i nput TurnXM. with gi XML
<gi XM.> SEND t he inputTurnXM. to the IF
</result>
I F <resul t> UPDATE the input TurnXM. with ifXM
<i f XM_> SEND the input TurnXM. to the DM
</result>
DM <f eedback> SEND t he feedbackXM. to the Anination
<f eedbackXM.>
</ f eedback>
DM <action> SEND <TakeTurn/> to the Anination
<out put TurnXM.> || NCREASE t he i nput Turnl D
</ action> RESET t he speechFragnent | D
RESET t he graphi cal Segnent| D
CLEAR t he i nput Tur nXM-
SEND t he out put TurnXM. to the Surface Generation
Sur f ace <action> UPDATE t he out put Tur nXML
Generation <out put TurnXM.> | SEND the output TurnXM. to the Speech Synthesizer
</ action>
Speech <action> UPDATE t he out put Tur nXML
Synt hesi zer <out put TurnXM.> | SEND t he out put TurnXM. to the Anination
</ action>
Ani mat i on <done> SEND <done><out put Tur nl D></ done> to the DM

<out out Tur nl D>

[<done>

The rules in table 1 are written in pseudo-code in order to make them readable, Furthermore,
they are the subset of all rules that are needed to make it possible to implement the information

flow in figure 4.

ASR NLU
Server Server
\‘ IF Dialogue
Server Server
GR y GI
Server Server
N
imati Speech Surface
Ar;:\na“t:n «——| Synthesis « Generation
Server Server

Figure 4. Theinformation flow in thefirst prototype.

The chosen architecture makes it possible to implement complicated turn handling strategies. The
Message Dispatcher associates all events from the dialogue components to a certain turn. This
makes it possible to handle fragmented speech as well as speech+gegure input from the user. It
also makes it possible to generate fragmented utterances from the system. The dialogue server
can generate a number of fragments utterances and utterances as the result of one spoken user
utterances, for example:

User

System (Cloddy Hans)

“Take the knife”

“yes

ASR(StartOf Speech) -> listening gesture

ASR(EndOf Specch) -> thinking gesture

DM (Feedback) -> let me see...

DM (Action(clarify(knife))) -> do you want me to take this <point at knife>?
Timeout(repeat(Action(clarify(knife)))) -> do you want me to take the knife?
DM (Action) -> ok I'll do that <do physical action>

Animation (Action,done)) -> SEND action done to DM

In this example the system will first give verbal and non-verbal feedback. Then it will send a
clarification question, which is repeated since the user did not respond within the time specified
in the Message Dispatcher’s timeout rules. All analyses relevant to a turn will be saved by the
Message Dispatcher this structure will be sent to the DM in the inputTurnXML-format outlined

infigure 5.

<?xm version="1.,0"?>
<Ni ceXM.>
<Tur n>
<| D></ | D><Speaker ></ Speaker ><Li st ener ></ Li st ener >
<ASR>
<Fr agnment >
<| D></ | D><Scor e></ Scor e><St art Ti me></ St art Ti me><EndTi me></EndTi me>
<Wor d><| D></ | D><Scor e></ Scor e></ Wor d>
<Wor d><| D></ | D><Scor e></ Scor e></ Wor d>
</ Fragnment >
<Fr agnment >
<| D></ | D><Scor e></ Scor e><St art Ti me></ St art Ti me><EndTi me></EndTi me>
<Wor d><| D></ | D><Scor e></ Scor e></ Wor d>
<Wor d><| D></ | D><Scor e></ Scor e></ Wor d>
</ Fr agnment >
</ ASR>
<NLU></ NLU>
<GR>
<Segnent >
<| D></ | D><Scor e></ Scor e><St art Ti me></ St art Ti me><EndTi me></EndTi me>
<shape></ shape><begi n /><end /><twoDboundi ngBox /><direction />
</ Segnent >
<Segnent >
<| D></ | D><Scor e></ Scor e><St art Ti me></ St art Ti me><EndTi me></EndTi me>
<shape></ shape><begi n /><end /><twoDboundi ngBox /><direction />
</ Segnent >
</ GR>
<@ ></ 4 >
<IF></IF>
</ Tur n>
</ Ni ceXM.>

Figureb5. Thelayout of theinputTturnXML in thefirst prototype.

The approach we have chosen for turn handling builds on Telia's experiences from the AdApt
project. The AdApt system had methods for handling fragmented utterances from the user [Bell
et a 2001], and it could generate multimodal feedback that made it possible to generate
fragmented utterances from the system [Gustafson et al 2002]. In the NICE system we are using
extensions of these turn-handling methods. It is the Dialogue Manager server that decides if a
turn is complete, while it is up to the Message Dispatcher to handle the actual timeouts needed to
wait for more input in cases when a turn was not considered complete. To exemplify the turn-
handling algorithm, let us consider a situation where Cloddy Hans stands in front of the shelf
with objects. Lets consider two cases where Cloddy Hans says one of two things:

1) Which one did you mean?
2) What do you want me to do?

If the user selects the knife, a graphical event will be generated and sent to the DM as something
like selection(knife). In the context of utterance (1) above, this graphical event will be considered
a complete turn by the Dialogue Manager server. This means that it will tell the Message
Dispatcher to generate a positive feedback gesture, while at the same time plan a response. The

10

generated response would then likely be to let Cloddy say “Ok”, and then let him perform the
physical action of picking up the knife.

In the context of utterance (2) above, the Dialogue Manager will not consider the user
contribution as a complete turn, since the intention of the user is not clear. It will then tell the
Message Dispatcher to generate a continued attention gesture, while at the same time produce a
request_for_clarification response to this incomplete turn. The Message Dispatcher will then use
temporal rulesto decide how long to wait for more input from the user (say up to four seconds).

If no more input has arrived within four seconds, the Message Dispatcher will use the
request_for_clarification response generated by the Dialogue Manager, and send this response to
Surface Generation and Speech Synthesis. However, let us now consider the aternative case
where the user after two seconds says “put it in the ‘dangerous slot”. The Message Dispatcher
will now add the new speech fragment to the current inputTurnXML, which now contains both a
speech fragment and a graphical segment. Analysis and fusion will now generate the combined
interpretation request(user, putdown(cloddy, knife, dangerous)), which will be sent to the
Dialogue Manager server. The generated response might then be to let Cloddy say “Ok” and then
let him perform the physical action of putting the knife in the ‘dangerous dlot in the fairy-tale
machine.

4 Interactions between the Input Fusion module and the
other modules

The following figures illustrate how we have integrated the Input Fusion module within a

preliminary architecture using the Broker described in the previous section.

In these testing examples, a simple XML output is provided by the IF module but can be easily
extended to include further information needed by the Character Module and Dialogue Manager
(see D5.1aand b) such as the confidence score in each maodality or the gesture shape.

11

o Smy Slarinifn Servers St GTRES T

-
LR s 1 1)
-
Dii
L i Fropacamng o m 4 Eres ser_taeelUn e Fe R e e
" mopEARn . SpeciCHon = menniein GO i Bl
¥ gadr W Ot 1A TR0 CEST 00
o 07
L ‘vl et o AFTANCE - ndl
=]
sy BFEECH FECOGHIT Ot wani |10
ML g Hing chyie KR EH 8 T3 CEET A
|- w16 R s Mt bl K ‘-!'"-'rllll talsilert
[i A CERT JhM e e 1]
s 1 b
A ETyRe - 5P EECH_RECTGANTION
I' T A bekaiE
|
1% ¥ L] ¥ wm
Mrvdiis LT Smutye 1
-
Lol _IITC0GME T E
N et
argRade | by
|
-
L] L]
Clase
[T—TT] =

Sabe Coisbcied
Bmszagh Log

Bl T An e mn H (W (@ = me o

= @ v TN fai AR [T mn

Figure 6: Screendump of thetest of the Input Fusion module with the KTH broker. Two simple clients have been developed for typing in XML messages
that may come out of the Natural Language Under standing and the Gesture I nterpreter modules (NLU and Gl in the two small windows above | eft).
When the button “simulate NLU” is pressed, an XML message simulating the recognition of the spoken command “ takeObject” issent to the |F module
viathebroker (see” Tycoon trace Window” above).

12

ez Slari ¥ Seryers TMy Fd 18 1% B2 0 CERT 700 2 -

LR s 1 1) el
- il
Dii
RLLS
o
¥

(0w Sl i i

1 TR 18T e [(R e B g e ps
Liinped Hirgail ranp=sraian & pex Ficstion = pEmpde ey femin i Frosomi iy SO0 D G D tosC e 0 B pe
:' el e G s Tl ‘H..l'm..h 1% 15 BT CERT i3
1 (1 i b (e 1 B3 CEET 20l et
A ks peeiints

(R T

1 -
% » % ¥ B W00 CEEST o v e
Oorraidwis FL LI Eamuine Gl et
e x'i T i
ar L
I s
LON_ITECOmLTE o — i LW = Herie T DanTocTion TH- =i
| O
|
| Wi | e
| B ha e T 15 £ 504, 56 'CALLF UK F 300 | MINE =aa i e KR resd il e -
LBk ertmes 1503 101 71 RETURA IF T LINE Upmangs me s b D4 |
-
i L "
B e
P
n .

[~ TTEEEr™ el i CHESTSY VL ENY THY TSESYSY THY TRESCHY TEESTHY TN - ErSaa o5 RO EON

Figure7: Following figure 6, the GI module smulatestherecognition of a gesture around the object “anniversary cake” and sendsthe corresponding
XML messageto | F. Thisevent ismerged with the previous NLU input and a XML messageis produced by the | F (Trace Window aboveright) and sent
tothesimple client smulating the Dialog Manager (middleright). The score of each modality can be combined with criteria such astemporal proximity

or number of modalities providing infor mation to get a multimodal recognition score (0.55 in this example).

13

! TSy Slarinin Servers AR, P Gt 015000 CE T 200 2 -
BT alsast: 1100 :LEE1:!1-"'“.
By it
0]
KLY
W i ot g im GG Db peci) e 1R =
¥ ey Ape i TeTITY Imia rem Pty S0 O G CiskaO bt 0 e
Ak | e it 1B CES
A ‘vl et o TEDIE. flal
= FETAAERT LAl
mn
L ingaid i
|- i i] wdmmarech e e one

ApEeET O 18 TR IR0 CEST Sl o s >

el LT

PR D= RS A
=

g [5 CEET MIlG=

L il Ll bk
| L] TRl) S L T L e b I _:ﬁ:\...u ”.. =
|mREnmanyRa g ki (e TR e A e Galli) RiETETiRi
1% ¥ % B
LT TRT Smatse [l
B W HHT Wantem | Hemd nae
-
MLl 5w 1At lan ¥
S04 CALL F UK I 6O | RUIHE =20 i ani P resserklian e =
SIGE WETURN IF A FILEME Mroregs repnved be D6 ¥
-
"

[~TTEMEET™ . it CHESTSY THITHY THY TRENSY THY TRESTRF TN o MRS o5E FFUTTECE

Figure8: A example similar to the previous one except that in thissimulation the user said “take the anniversary cake” specifying both the function and
an object in speech. In this case, the spoken and gestural input are also merged but the final multimodal recognition scoreishigher (0.725) than in the
previous example since mor e infor mation was provided by the speech modality.

14

We have also tested the IF with the 2D testing environment we had developed for the 2D Wizard
of Oz experiment. This 2D testing environment was designed for the preliminary collection of
user's behaviour via a Wizard of Oz which was carried out early in the project before the NICE
3D environments were designed and implemented (D3.3 April 2003). In the forthcoming 1%
NICE prototype, the Gl and IF modules will be connected with the 3D environments (the Hans
Christian Andersen study and the fairy tale world).

For individual testing purposes, we have used the IBM ViaVoice development kit* for speech
recognition with which had used for fast specification of grammar and connection with Java
software using Java Speech API. The testing grammar was defined out of data produced by the
experimental Woz studies with the same 2D application. The French spoken corpus contained
1250 multimodal or spoken utterances. The grammar contains 120 rules which were translated
from a summary of the corpus. The grammar is provided in appendix. The IBM ViaVoice speech
synthesis was also used for the 2D test. Since we use the Broker architecture and XML messages,
the IBM ViaVoice client used for fast prototyping purposes can be easily replaced with another
client using SpeechPearl recognition engine (see D3.1 Trained Acoustic Models for Swedish
Recogniser).

In the screendump displayed in figure 9 one can see the different steps of processing.
1:the SR, NLU, GR, GlI, IF and 2D Leatest environment modules connect to the Broker

2: the user said “Hello” which was associated with the vocal command “greetings’ in the
IBM ViaVoice grammar

3 : the SpeechReco module sends to the Broker the recognised command : greetings ; this
message is forwarded to the NLU module

4 : asemantic representation in XML is sent by the NLU to the IF module via the broker
5: the IF module forward (since no gestures) to the 2D L ea environment application

6 : the 2D Lea environment application activates the character’s response (spoken and
displayed utterance : “Hello")

11BM ViaVoice developer’s corner:
http://www-3.ibm.com/software/voi ce/viavoi ce/dev/index.shtml ?20pen& ca=daw -prod-cantts

15

:Hl‘w o+ Revatra] 4 T2 21 895 CALL FUBEC BraethRoro_ClaebSinrsines 4711 Speaonfie g IMIE grosdnge’ NN TE wpmrdnls Repretertiasns veate «00 00 (C=up ore= | Daricnips = feniicn = gos
*Eroker Tewrat 4 32 21504 RETUR N Bpee o o_CHartEiocskost | Q1 # INLINE givainge” B i B rrren cenig a0 40 Dl v pcorme | Qeigenrs an g

6a

A
xR melabs
<claber0 Do

dpimmn

<eishefucions
o kbl badits limgefospecls

stmandchinoe s entabons sreamantic Pepresencaian:

Bimvaiate MLL Frmlate

5 Samari FIDHSIINI- <oulsvFIi Bog 261400 12 CERT 1043 danke < oioqe 100000 <niion>(ieeng SoTamany 0ot Dot Uskrank P anmianet
UEIDn HUNE <sessanlTREpesaniatans <ol Fi 5o 26 § 4 7102 CEST 003 <itale= <300ivT DSt Hrunan-giings Shnition <eoRli=istps samanicRap

T demarmr

Figure 9. Screendump of a test of the IF module within the 2D environment. Other screendumps with gesture and fusion
examplesare provided in appendix.

16

5 TheTYCOON technology used within the |F module

We describe in this section the TYCOON technology that was used within the IF module. This
technology includes a specification language and a software architecture for the recognition of
multimodal commands.

The specification files used for the 2D tests are provided in appendix (the speech grammar, the
specification of 2D "referenceable” objects, the specification of expected cooperations between
modalities).

In this section, we describe each of the components of a multimodal application in the Tycoon
context:

amonomodal application defined by a set of command templates and a set of objects (e.g.
amap with aclassical graphical user interface),

a set of referenceable graphical objects,
a module managing each modality,

a multimodal recognition engine which makes use of a multimoda specification file
containing the expected cooperations between modalities in order to merge events
detected by each monomodal module and execute application commands.

5.1 Monomodal application

Tycoon has been initially designed for command language applications. The application interface
is represented by a list of commands. Each command is represented by a template made of a
command name and allist of couples binding valuesto parameters:

CommandNanme [Paraneter [Value]*]*

Such a model has also been used in other multimodal systems such as [Teil and Bellik 2000,
Faure and Julia 1994]. A command is recognized when the system has recognized the command
but still needs to solve references in order to bind values to the parameters. After this reference
resolution process is over, the command is said to be interpreted. The values attached to the
parameters can either be constants or referenceabl e objects.

5.2 Referenceable objects

One feature of multimodality is the possibility to refer to graphical objects either through speech,
gesture or a combination of both. In this perspective, we have introduced the notion of
referenceable object. A referenceable object embeds an object of the graphical application with
knowledge on how to refer to this object (with linguistic or non-linguistic means). In a classica
map application, such objects are hotels, restaurants or streets that the user is able to refer to with
commands. In Tycoon, the reference resolution process is based on the computation of salience
values (already used by [Huls et al. 1995] in the domain of multimodal systems). The salience
value of a referenceable object in a modality gives an idea of how much this object is explicitly
referred to in this modality. It can take any value between 0 and 1. A global multimodal salience

17

value is computed across several modalities to find the best candidate for reference resolution.
Two referenceable objects may have the same salience in one modality (e.g., graphics). Yet, this
ambiguity might disappear when considering the salience of these objects in another modality
(e.g., gesture). Redundancy is involved when multimodal salience is very high, whereas
complementarity is involved when multimodal salienceisvery low.

A referenceable object is thus a graphical object (from the monomodal application) which can be
referred to by one or several modalities such as speech and gesture thanks to the definition of
propertiesand salience values. A property isapair (label, value). The label is an attribute of the
graphical objects of the application. In a map application, the main graphical objects are
buildings and streets. The properties of such objects are "name”, "type", "address’, "location".
The advantage of this representation of propertiesis that references to graphical objects become
possible through their name ("Orsay museum"), their type ("this museum"), their address ("the
museum which isin rue de la Légion d'Honneur"), or a combination ("this museum" + gesture).
We have included in the notion of referencable object a set of salience values for each modality.
The salience value of areferenceable object in a modality gives an idea of how much this object
is explicitly referred to in this modality. This salience value is computed thanks to modality
specific rules. For instance, the recognition of the word "hotel" by the speech recogniser
increases the salience of al hotels located on the map. Table 2 provides informal definitions of
such rules for updating the salience of referencable objects when events are detected. These rules
do not depend on the application but are intended to be generic. A global multimodal salience is
computed for each object as a weighted sum of the salience of this object in each modality. This
multimodal salience is used to find the best candidate for reference resolution. In case of
ambiguity, two referencable objects may have the same salience in the same modality. Yet, this
ambiguity might be removed when considering the salience of these objects on other modalities.

Would severa objects have exactly the same multimodal salience value, in the current version,
one object is selected randomly. We can also add dialogue or another modality which was not
considered for the computation of the multimodal salience value such as the graphical context
(e.g. abig object in the middle of the screen would be selected).

Tables 3 and 4 provide two examples of salience computation. In Table 3 the Orsay Museum was
fully specified without any ambiguity via speech. Thus, the salience of this museum in the speech
modality is 1. Since no gesture was detected, the salience of the Orsay Museum in the gesture
modality is 0. Since this museum is between the centre of the map and the border, the salience in
the graphics modality is 0.6. A multimodal salience value is computed as a weighted sum of the
three values. The result (0.178) is higher than the salience of any other object. In Table 4, the user
said “show me some information about this museum”. Thus the salience value of the Orsay
Museum in the speech modality is lower (0.5 for every museum of the map). But an arrow
gesture was also detected near the Orsay Museum. The gesture salience value is computed for
each object as afunction of the distance between the object and the focus point of the gesture. By
combining these salience values, the multimodal value of the Orsay Museum is higher than the
salience of any other object and information about this museum is finally displayed.

18

Table?2

Informal definition of rulesfor updating the salience of objectswhen an event isdetected

Spoken event

Gesture event

If the recognised sentence contains the unique name of an object (eg. "the Orsay
museum™), set the salience in the speech modality of this object to the score provided by
the speech recogniser.

If the recognised sentence contains the value of a property of an object (e.g. "the
museum™), increase the salience in the speech modality of all referencable object having
the same property value (e.g. all the museums) taking into account the score provided by
the speech recogniser.

Set the salience in the gesture modality as a function of the distance between the location
of the object and the focus point of the recognised gesture.

Graphics

Set the salience in the graphics modality as a function of the distance between the location
of the object and the centre of the screen.

History

After the recognition of a command, the salience of objects referred to in this command is
decreased by aforgetting factor.

Table3

Salience values of the “ Orsay museum” object in the casethe user said “ Give me some
infor mation about the Orsay museum” and did not gesture

Speech Salience

Gesture Salience Graphics Salience Multimodal salience

1

0 0.624 0.178

Table4

Salience values of the * or say museum” object in the case the user said “ Show me some
information about thismuseum” and did a circling gesture

Speech Salience

Gesture Salience Graphics Salience Multimodal salience

05

0.994 0.479 0.257

5.3 Multimodal Recognition Engine

The specification file describing the expected cooperations between modalities is parsed by a
multimodal recognition module which builds a hybrid symbolic-connectionist network inspired
from Guided Propagation Networks which enable coincidence and sequence detection thanks to
propagation of internal signals between connected processing units [Béroule 1989]. We have
adapted such networks by 1) dedicating some nodes to the processing of each type of cooperation

19

between modalities, 2) by introducing the propagation of symbolic structures for the management
of hypothesis regarding interpretation of detected events.

When the systems starts, the specification file described above is parsed and a network is built.
The network is composed of two types of nodes. Information nodes are associated to events
detected on each modality. Cooperation nodes are associated to each expected cooperation
between modalities. During execution, the following algorithm is used by the multimodal
recognition engine:
Parse the multimodal specification file
Create the multimodal cooperation network
Create the set of referenceable objects
Init the monomodal application
Whilethe user does not ask for exit
If an event is detected on amodality
Update the salience of al referenceable objects according to this event
Create an information object associated to this event
Put it in the output of the information node managing this event
For each cooperation node N in the network

Compute a boolean toBeActivated as a function of (type of cooperation, output of the input
nodes to node N)

If toBeActivated is true
Build a hypothesis object, compute its score and put it in the output of node N
If N isatermina node (associated to an application command)
Solve references if needed
Execute the command

The activity level of anode at the end of a multimodal command pathway corresponds to the way
an occurrence of this command matches its internal representation. This "matching score"
accounts for the degree of distortions undergone by the reference multimodal command,
including noisy, missing or inverse components. Initially applied to robust parsing this feature
has been adapted to multimodality. This quantified matching score results of three properties of
GPN:

the amplitude of the signal emitted by a speech detector is proportional to the recognition
score provided by the speech recogniser,

amultimodal unit can be activated even if some expected events are missing (in this case,
the amplitude of the signal emitted by this variable is lower than the maximum),

the higher the temporal distortion between two events, the weaker their summation (or
note of temporal proximity), because of the decreasing shape of the sgnals.

20

5.4 Specification of cooper ations between modalities

A file describing the expected cooperations between the modalities is associated to each multi-
modal application. We have defined a command language for specifying such cooperations. This
language is based on the Tycoon typology of types of cooperation (equivalence, specialisation,
complementarity, redundancy). The value of temporal parameters is aso included in the
specification (i.e. coincidence duration, sequence delays).

21

6 References

Allwood, J. "Reasons for management in dialog” in Beun, R.J., Baker, M. and Reiner, M. (eds.)
Diaogue and Instruction. Springer-Verlag.pp 241-50, 1995.

Bell, L, Boye, J, and Gustafson, J. "Real-time Handling of Fragmented Utterances’, Proceedings
of NAACL 2001.

Béroule, D. “Management of time distorsions through rough coincidence detection”. Proc.
EuroSpeech'89, 1989, pp. 454-457.

Buisine, S, Martin, J-C. (2003). “Experimental Evaluation of Bi-directional Multimodal
Interaction with Conversational Agents’. Proceedings of the the Ninth IFIP TC13
International Conference on Human-Computer Interaction (INTERACT'2003), September 1-
5, 2003 - Zirich, Switzerland. http://www.interact2003.org/

Catinis, L. and Caelen, J. Analyse du comportement multimodal de I’usager humain dans une
tache de dessin. Actes des 7emes Journees sur I’ Ingénierie de I Interaction Homme Machine
(IHM’95). In French. 1995.

Corradini, A., Mehta, M., Bernsen, N.O., Martin, J.-C., Abrilian, S. “Multimodal input fusion in
human-computer interaction - On the Example of the NICE Project”. Proceedings of the
conference held inin Yerevan, Armenia NATO-ASI series, Kluwer, 2003.

Faure, C. and Julia, L. “An Agent-Based Architecture for a Multimodal Interface”. Proc. AAAI
Intelligent Multi-Media Multi-Modal Systems Symposium, Stanford University. 1994,

Gustafson, J, Bell, L, Boye, J, Edlund, J and Wiren, M. "Constraint Manipulation And
Visualization In A Multimodal Dialogue System™, Proceedings of the ISCA Workshop Multi-
Modal Dialogue in Maobile Environments Kloster Irsee, Germany. 2002.

Huls, C., Claassen, W. and Bos, E. “Automatic Referent Resolution of Deictic and Anaphoric
Expressions’. Computational Linguistics, val. 21 (1), pp. 59-79. 1995.

Kehler, A., Martin, J.C., Cheyer, A., Julia, L., Hobbs, J. & Bear, J. “On Representing Salience
and Reference in Multimodal Human-Computer Interaction” Proceedings of the AAAI'98
workshop on Representations for Multi-modal Human-Computer Interaction. July 26-27,
1998, Madison, Wisconsin. USA.

Martin, J.C., Julia, L. & Cheyer, A. “A Theoretical Framework for Multimodal User Studies’.
Proceedings of the Second International Conference on Cooperative Multimodal
Communication, Theory and Applications (CMC'98), 28-30 January 1998, Tilburg, The
Netherlands

Mignot, C. & Carbonell, N. "Commandes orales et gestuelles. une étude empirique." Techniques
et Sciences Informatiques 15(10): 1399-1428. 1996.

Oviatt, S., De Angdli, A. & Kuhn, K. Integration and synchronization of input modes during
multimodal human-computer interaction. Human Factors in Computing Systems (CHI'97),
New York, ACM Press. 1997.

Sacks, H., Schegloff, E. & Jefferson G. “A simplest systematics for the organisation of turn-
taking for conversation”. Language 50, pp. 696-735. 1974.

22

Siroux, J., Guyomard, M., Multon, F. & Remondeau, C.” Multimodal references in GEORAL
TACTILE". Workshop "Referring phenomena in a multimedia context and their
computational treatment” held in cunjunction with ACL/EACL'97, Madrid, Spain. 1997.

Teil, D. and Bdllik, Y. “Multimodal Interaction Interface Using Voice and Gesture”. The
Structure of Multimodal Dialog I, M. M. Taylor, F. Néel, and D. G. Bouwhuis, Eds. 2000.

Traum, D and Heeman, P. "Utterance Units in Spoken Dialogue,” Dialogue Processing in Spoken
Language Systems, Lecture Notes in Artificial Intelligence, E. Maier, M. Mast, and S.
LuperFoy (editors), Springer-Verlag, 1997.

23

7 Appendix
7.1 ViaVoicegrammar fileused for the 2D test

grammar leg;
public <greetings> = good morning { greetings}
| hi you { greetings}
| hi sir { greetings}
| hello you { greetings}
| hello sir { greetings}
| greetings { greetings}
| hello { greetings}
| hi { greetings} ;

public <bye> = see you soon { bye}
| see you later { bye}
| good bye { bye}
| may i leave { bye}
| i want to leave { bye}
| i am going { bye}
| i leave {bye}
|i go out { bye}
| i want to quit { bye}
| i quit { bye}
| i would like to go out { bye}
| could i go out { bye}
| bye see you { bye}
| bye {bye}
| leave { bye}
| ciao { bye}
|seeyou{bye}

public <giveObject> = put { giveObject}
| take it { giveObject}
| takei give it to you { giveObject}
| go ahead take it { giveObject}
| you can take it { giveObject}
| i giveit to you { giveObject}
| give { giveObject}
| you want <determine> <object> { giveK nownObject}
| give <determine> <object> { giveKnownObject}
| i bring you <determine> <object> { giveKnownObject}
| i bring <determine> <object> { giveK nownObject}
| i come to give you <determine> <object> { giveK nownObject}
| i come to bring you <determine> <object> { giveK nownObject}
| put <determine> <object> { giveKnownObject}
| put <object> { giveKnownObject}
| take <determine> <object> { giveK nownObject}
| give you <determine> <object> { giveK nownObject}
| here is <determine> <object> { giveK nownObject}
| give <determine> <object> { giveKnownObject} ;

public <takeObject> = give me the object { takeObject}
| i take the object { takeObject}
| again { takeObject}
| cani take { takeObject}
| cani have { takeObject}
| cani take from you { takeObject}

24

|i takeit {takeObject}

| can you give me the object { takeObject}

| can you give me { takeObject}

| could i have {takeObject}

| do you want to give me {takeObject}

| giveit to me{takeObject}

| giveit { takeObject}

| i would like to take { takeObject}

| i serve myself { takeObject}

| give me { takeObject}

| take { takeObject}

| <object> { takeK nownObject}

| give me <determine> <object> { takeK nownObject}

| cani take from you <determine> <object> { takeK nownObject}
| can i have <determine> <object> { takeK nownObject}

| can i take <determine> <object> { takeK nownObject}

| i take from you <determine> <object> { takeK nownObject}

| i would like to take <determine> <object> { takeK nownObject}
| i would like <determine> <object> { takeK nownObject}

| can you give me <determine> <object> { takeK nownObject}

| <determine> <object> { takeK nownObject}

| i can take <determine> <object> { takeK nownObject}

| i take <determine> <object> { takeK nownObject}

| i want <determine> <object> { takeKnownObject}

| i come to take <determine> <object> { takeKnownObject}

| i would like to have <determine> <object> { takeK nownObject}
| could i have <determine> <object> { takeK nownObject}

| take <determine> <object> { takeK nownObject}

| take <object> { takeK nownObject}

| do you want to give me <determine> <object> { takeK nownObject}
| give me <object> { takeK nownObject}

| i would like to take <determine> <object> { takeK nownObject}

public <askWish> = what do you need { askWish}
| what do you want { askWish}
| do you need anything { askWish}
| do you need an object { askWish}
| have you a question { askWish}
| what { askWish}
| ask { askWish}
| say what you want { askWish}
| cani help you { askWish}
| do you need { askWish}
| do you want something { askWish}
| do you need something { askWish}
| i can help you { askWish}
| which { askWish}
| what else do you want { askWish}
| what would you want { askWish}
| what do you want me to do { askWish}
| serve you { askWish} ;

<determine> =this | that | the;

<object>=book | story book
| kitchen book
[lamp
| bedside lamp
| candlestick lamp
| cake
| anniversary cake
| vanilla cake ;

25

7.2 TYCOON file specifying cooper ation between modalitiesfor the 2D test

#H.

#MODALITIES
modality MOUSE_POINTING 1
modality SPEECH_RECOGNITION 1

#H.

#EVENTS

input ISL SPEECH_RECOGNITION grestings

input 12 SPEECH_RECOGNITION bye

input 1S3 SPEECH_RECOGNITION giveObject

input 14 SPEECH_RECOGNITION takeObject

input 1S5 SPEECH_RECOGNITION askWish

input 16 SPEECH_RECOGNITION givek nownObject
input 17 SPEECH_RECOGNITION takeK nownObject

input 1G1 MOUSE_POINTING position

#H.

#COMMANDS

#-- Cooperations used by each command

#- greetings command
specidisation CCgreetings IS1
endHypothes's CCgreetings greetings

#- bye command
specidisation CChye 182
endHypothesis CChbye bye

#- askWish command
specidisation CCaskWish 1S5
endHypothesis CCaskWish askWish

specialisation CCmouse_position IG1
semantics CCmouse_position position

#- giveObject command

specidisation CCspeech_giveObject 1S3

complementarity temporal Proximity 5000 CCgiveObject CCspeech_giveObject CCmouse_position
endHypothesis CCgiveObject giveObject

#- takeObject command

specidisation CCspeech_takeObject 1S4

complementarity temporal Proximity 5000 CCtakeObject CCspeech_takeObject CCmouse_position
endHypothesis CCtakeObject takeObject

#- targetObject command
#- endHypothesis CCmouse_position targetObject

#- giveKnownObject command

specialisation CCgiveKnownObject 1S6
endHypothesis CCgiveKnownObject giveKnownObject
#- takeKnownOhbject command

specidisation CCtakeK nownObject 1S7
endHypothesis CCtakeKnownObject takeK nownObject

26

7.3 Object fileused by the |lF modulein the 2D test

<?xml version="1.0" encoding="utf-8" ?>
- <listObjects>
- <object>
<fileName>story_book.gif</fileName>
<name>story book </name>
<size >big</size>
<shape>square</shape>
<color>red</color>
<characteristic>heavy</characteristic>
<x>300</x>
<y>530</y>
</object>
- <object>
<fileName>kitchen_book.gif</fileName>
<name>kitchen book</name>
<size>small</size>
<shape>rectangular</shape>
<color>gray</color>
<characteristic>light</characteristic>
<x>430</x>
<y>530</y>
</object>
- <object>
<fileName>bedside_lamp.gif</fileName>
<name>bedside lamp</name>
<size>small</size>
<shape>round</shape>
<color>red</color>
<characteristic>broken</characteristic>
<x>560</x>
<y>530</y>
</object>
- <object>

<fileName>anniversary_cake.gif</fileName>

27

<name>anniversary cake</name>
<size>medium</size>
<shape>triangular</shape>
<color>yellow</color>
<characteristic>cold </characteristic>
<X>690</x>
<y>530</y>

</object>

- <object>

<fileName>candlestick_lamp.gif</fileName>
<name>candlestick lamp</name>
<size>medium</size>
<shape>fork</shape>
<color>silver</color>
<characteristic>shining</characteristic>
<x>320</x>
<y>185</y>

</object>

- <object>

<fileName>vanilla_cake.gif</fileName >
<name>vanilla cake</name>
<size>small</size>
<shape>round</shape>
<color>yellow</color>
<characteristic>hot</characteristic>
<x>310</x>
<y>500</y>

</object>

</listObjects>

28

[Tty o AL TR e F TP s Tk | =
AL Lot T “Fu b otk s e B p s i - i

|
e S S S ———

Figure 10: A screendump with gesturein the 2D test environment.

29

e |
| | 0 R EET i | e | e e | | e e e (e | e e e | 2 | e | e e e g | e

[T
FRE

3 B2 T TR QR
W ESG RETHRY OGevkeeR

T BLE T a_id TE:
AL U G e Rl Fed_C midoen st
A9 565 FE TURM D RebaeReen_Cienigiocatoat 1168

- Cabmkggplon At 120 INLIE (it

La
e n MW e
e

Sk foek 1171 1 Geate

G INUME S

FIT TALL FLRN T
S HETLIRR 5 TR

AT B LI T
A
0 0% | ILITAE (el K

T

SRRV Hapaain K Rkai e
A iR (ki

] O R

A ssuranm REE i =
o

o
it Lk i (AR =8
TR R R T

Esfer. el sl gl ael BRLAOE R

Evomi bpbocaisas 1119

Costafiace
LT

L
frpad P

TERTTRC AT DO T TN I

PP cmrrar e aaevisiices s Cabees (60 N0 COrhdaldn = =g rowwr | I o

i Ll
Ve

e g b i
rfansinre g otbjac nhrsion

s L] P T dmrrork spsrz sl e =
=abypciwan s rkpaklant rimmankiRapeezonistnes

T ol i =3camr L Onen s
T e ramen et Onncee
11l

e | AR B AR | e e] e | e e e | (e e e | e g e | o | sl [T e

| aw

Figure11: A screendump with fusion in the 2D test environment.

30

TR LT TR TN TR UL TR

= o vl b ' b e el P sl e

“irw ey Wt

Brpaar cuspwrinm dmmhndlii

HLME Caika

1 OechweRaid BLE Canid
WALRE Cile’

Eﬁwwm_wwmmm‘:wﬂm— =it

Tl =i Baco_ R NS 1100 M LR S
EAREROCU 0T LR e
0 Ghent g e300 1 Coess iy
0, LR Rl 06 1 S WA

s WS ATl 1505 1

ME Bailvish

FrefeerETiM e =
k

] g e am) ise] mu -i'.[._q;ﬁ.'g raTiL

