The Dialogue Engineering Life-Cycle

LallaDybkjaer and Niels Ole Bernsen
Natural Interactive Systems Laboratory, Odense, Denmark
laila@nis.sdu.dk, nob@nis.sdu.dk

Abstract

Software engineering life-cycle models have been around for about 30 years. Various nodds
have been proposed, refined and adapted to the needs of different sub-areas of systems
devdopment. Didogue enginering is a farly new sub-area of software engineering,
commercid spoken language didogue sysems (SLDSs) having been in the market place for
only about a decade. While an iteraive software engineering life-cycle mode may apply to
SLDS devdopment a a generd leve, the modd is insufficient at lower levels of detall. To
better support SLDSs developers in industry and research, there is a need for a mode which
goecidises software enginering life-cycdle moddling to the devdopment and evaudion
processes which are gpecific to SLDSs and their components. This paper describes and
illustrates did ogue enginering life-cyde moddling and how to tailor it to the field of SLDSs.

1. Introduction

Even if software enginearing life-cycle modeling is not new, a continuing variety of generd
models having appeared over the last 30 years, the fied remains of mgor interest to industry
and research. For indudry, a life-cycle modd is an important tool to efficiently control the
development and evauation process and ensure qudity. In research, professona engineering
prectice is becoming increasingly important as researchers ae moving from component
exploration to advanced systems development. In severa sub-aress of systems development,
generd models have been refined and adapted to better suit the particular needs of those areas
and thus provide better support. An example is safety-criticd systems where evaudion is
emphasised much more than in many other areas of software development. One reason why
life-cycle modelling is a research topic in itsdf is that the adaption process has not yet
happened in dl sub-areas. Didogue engineering is one such sub-area in need of a modd
which gpecidises software engineering life-cycle modelling to the deveopment and
eva uation processes that are specific to SLDSs and their components.

This paper proposes a didogue engineering life-cyde modd which is talored to SLDSs
devdopment and evdudion. Section 2 reviews generd <oftware engineering life-cycle
models and briefly describes the main models or their main representatives, i.e. the waterfal
modd, the iterative mode, prototype development, the spird modd, and extreme
programming. Section 3 presents the generd DISC didogue engineering model which
goecidises iterdive life-cyde moddling to the specid needs of didogue engineering. Section
4 describes and illugtrates the DISC didogue enginearing modd in detal, induding life-cycle
issues, integration of so-cdled ‘grid issues, addition of evauation criteria, and description of
the resulting dialogue engineering development and evauation life-cycle.

2. Softwar e engineering life-cycle models

The fird software engineering life-cycle modd was introduced about 30 years ago. Before
that time developers used what has been cdled the tunnel development model (Muller 1997).
Projects were initiated and, some day later, maybe, a sysem resulted. There was no modd of
the development process itsdalf. But there was a clear need to get some structure to the process,
eg. to better understand software development and judify the resources spent on
development.

Analyss j
Diesign j
 onstruction j
Irtegyation 1’#* -
—
—
-

Il aittenatice

Figure 1. The waterfdl mode of software development.

This firsd model (Royce 1970) became known as the waterfall model because it basicaly
describes the development process as a linear execution of four seps followed by a
maintenance phase when the software has been put into operation, cf. Figure 1. The five steps

ae known by different names. We shdl refer to them as andyds, design, condruction,
integration, and maintenance, respectively. The modd was wel recelved because it provides
sructure and vighility to the development process.

The identification of mgor activities and the shifts in overdl focus as development proceeds
was the prime contribution of the waterfal modd and is 4ill valid today. However, the mode
is too ampligic and rigid. The drictly separated phases lead to costly handling of changes and
poorly reflect human cognitive and socia processeses.

The firg problem identified in the modd was the assumption that a system or component is
only being evduated in the integration phase, i.e. towards the very end of the development
process. Until then, only documents are available for validation. This means that even serious
problems may only be discovered a a late Sage when the cost of making changes is high. A
second problem is that the modd assumes that a particular phase is being fully completed
before the next phase is initiated. This means that, eg., dl requirements must be known and
made explicit in the andyss phase before continuing to the desgn phase, which is often in
conflict with the redlity of software engineering practice.

- -

Anialyais Functional tests
j TV dlidated by I

- -

Dresign j { Integration tests

Construction | 4—% | Unit tests

Application
Figure 2. Example of aV development model. Tests are developed in pardld
with the software (Muller 1997).

One way to address the evauation problem is to introduce eements of evauation a earlier
dages in the life-cycle. Laer verdons of the waterfadl mode are thus sometimes presented in
the form of the letter V, indicating that the development of test plans and test data is done
synchronoudy with software development. Even if, in the waterfal modd, actud evauation
is only carried out once the software is ready, the V-model is likely to improve deveopers
understanding of the life cycle sages and the software being developed by encouraging them

to decide on detailed evaluation plans and data a each stage. Figure 2 shows an example of a
V modd in which functiond teds are oecified during andyds, integration tests during
design, and unit tests during the construction phase.

However, the V-modd remans rigidy sequentid and puts too little focus on the humen
processes. Severd dternative, generd life-cycle models have been proposed in the attempt to
overcome the problems of the waterfdl modd and meet the needs of complex systems
development, see eg. (Pressman 1997, Sommerville 1992 or later) for an overview. Some of
these modds have not been used much in practice, such as the forma trandformation model
(Pressman 1997, Sommerville 1992). Other models appear under different names but are, in
fact, quite smilar and may be viewed as vaiaions on the same mode, eg. exploratory
programming and prototyping. In this brief overview we shdl only mention what we congder
the main models or their main representatives, i.e. the iterative mode, prototype development,
the spird modd, and extreme programming. The overview focuses on process gructure.
Other important aspects that have been identified in the 1980s and 1990s are not included,
such as user involvement, organisationd and socid implications of introducing new systems,
teamwork, or design rationae representations.

A frequently used modd is the iterative model which has many variations depending on, eg.,
project sze and domain complexity (Muller 1997). The iterative mode incorporates the idea
of iterating one or more of the first four phases of the waterfall modd, cf. Figure 3. Moreover,
phases may overlgp and sometimes a breskdown into more detailed phases is introduced.
Today, the trend is towards shorter cycles, focusng on prototypes. In fact, both prototype
development, the spird modd and extreme programming ae iterative modes and may be
viewed as further developments of the fird iterative software engineering life-cycle models.

Analysis
‘. j
— Design [
Z onstruction
&
Ittegration 1#, -
—
—
-

Iaittenatice

-

Figure 3. The iterative modd.

Prototype development has been used widely since the heydays of Al 20 years ago.
Prototyping is a ussful method when it is not clear in advance what the system should be like,
as may be the case with, eg., systems exploring new forms of interaction. Prototypes are aso
wel suited for rgpidy condructing an early verson of the intended system. Prototyping
requires good planning and process control. One risk is that programmers do not want to
discard code from the prototype even if the fina system could be improved if (part of) the
prototype code were re-implemented.

CUMULATIVE ,‘,

Y cosT PROGRESS -

THi f
DETERMINE STERE:GH EVALUATE
OBJECTIVES, ALTERNATIVES
ALTERNATIVES, IDENTIFY,

CONSTRAINTS RESOLVE RISKS
|

RISK ANALYSIS

RISK ANALYSIS

R A |
SK ANALYSIS -

COMMITMENT, e -
PARTITION,
H A,f ProToy TOTOTYRE:
o TYPE,

REVIEW

ROTS PLAN - EMULATIONS|
ar COMCEPT OF = -
LIFE CYCLE OPERATION
PLAN SOFTWARE
RQTS
SOFTWARE DETAILED

DEVELOP- PRODUCT DESIGN
RECQUIREMENTS
MENT PLAN VALIDATION DESIGN - oy

NTEGRATION ~ SO%F
| I
AND TEST DESIGN VALIDATION

-~
r AND VERIFICATION UNIT =
PLAN NEXT l FLAN % TEST

PHASES INTEGRA-
) TION AND ™
\ acceet. A TEST
IMPLEMEN-\ ANCE TEST)
TATION DEVELOP, VERIFY
| NEXT LEVEL PRODUCT |

Figure 4. Spira development diagram
(http:/Amww.stsc.hill .af.mil/crosstalk/2001/may/boehm.asp).

The spiral model, cf. Figure 4, was introduced in the mid-1980s (e.g. (Boehm 1988)). “It has
two man diginguishing festures. One is a cydic approach for incrementdly growing a
sydem’'s degree of definition and implementation while decreasng its degree of risk. The
other is a set of anchor point milestones for ensuring stakeholder commitment to feasible and
mutudly satidfactory sysem solutions’ (Boehm and Hansen,

http:/Mmww.stsc.hill.af.mil/crossta k/200/may/boehm.as). Roughly — spesking, the modd
combines prototype development with use of the waterfdl modd for each sep. The spird
model is intended to hep manage rik. The sysem is defined and developed stepwise,
corresponding to cydes in the spird. Each cyde is in principle ended by answering the
quedtion: “Should we continue?” ether negativdly or postively depending on the risks
involved. Each new cycle darts by an andyss to determine the best way in which to ded with
the current cycle. Badcdly, each cyce in the spird includes the following four deps
determine objectives, andyse and evduate, develop and test, and plan next phase. The spird
model has drongly influenced later systems development methods, such as DSDM (Dynamic
Systems Development Method) (www.dsdm.org).

Extreme programming is a farly recent modd. It bascaly prescribes to do everything
(andyds, design, etc) al the time, i.e udng very rapid iterations. Programming is done
parwise, i.e. progranmers dt together in pars when writing code, providing red-time
andyss and code review. A limited-functiondity prototype is developed very early in the
project. For instance, the prototype may be able to handle a dngle key functiondity issue
only. Every day, every week, or whatever may be the turn-over time, an improved verson of
the prototype is made ready. In this way, the prototype is eventudly extended to have the
functiondity required of the find sysem. Thus the prototype keeps changing rapidly, and
components are being updated independently (e.g. (Beck 1999a, Beck 1999b)).

The two mgor problems in the waterfal modd, i.e. (too) late evaluation and drict phase
seridity, cf. above, are both addressed in the iterative modd and its variations discussed
above. By being iterative, those modds by definition overcome the problem that a particular
phase is being fully completed before the next phase is initiated. Moreover, by consequence
of ther iterative nature, the models share the idea that sysslem or component evauation is not
only done once towards the end of the development process but is done throughout
development. The main difference among the models as regards evauation would seem to be
the time it takes to make an iteration, with extreme programming assuming the fader turn
around time.

Software enginesring life-cycle issues have remained an important research area ever since
the firs mode was presented, and their scope includes both custom-made and off-the-shdf
software. Usng an adequate life-cycdle modd is of key importance to efficient and successful
software development. Nevertheless, too little attention is often pad to this fact by
development teams. This may patly be due to ignorance but an important reason probably
aso is that detailed software life-cyce modds are ill missng in many aress or are gill & the

research stage. An area in point is that of spoken language didogue systems (SLDSs). A
specidised didogue engineering life cyde modd is discussed in more detal in the following
sections.

3. The DI SC dialogue engineering model

The firs, very smple commercid SLDSs were introduced only about 10 years ago. As
increesingly advanced and complex SLDSs are being developed in research and industry, the
need has emerged for adetailed didogue engineering life-cycle modd.

At a gened levd, the iteraive life-cycle modd in Figure 3 aso goplies to SLDSs
devdlopment. However, a mode which specidises to the development and evauation
processes which are specific to SLDSs and their components could provide far better support
to SLDS developers. Also, there is a need for a model which not only focuses on software
development but aso on its evauation, on the developmert and evaluaion of documentation,
and on the continuous evdudion of factors which may influence the devdopment and
evauation process a any time throughout the life-cycle.

In the European DISC project (www.disc2.dk) on best practice in the development and
evduaion of S.DSs, we developed a draft didogue engineering mode for SLDSs and
components. The modd indudes a life-cycle model, a so-cdled ‘grid’ (see below), and a set
of evduaion criteria The draft modd, and in particular its life-cycle part, has been further
developed and refined after the DISC project ended in early 2000. The resulting diaogue
engineering modd is described below using dia ogue management for illustration.

The current verson of the DISC didogue engineering mode is based on (i) first idess in
(Bernsen et d. 1998), (ii) the DISC approach to didogue engineering, (iii) anadyss by the
DISC patners of the actud life-cycles and properties (‘grid’ issues, see below) of a large
number of different SLDSs and components, and (iv) the draft DISC modd with subsequent
elaborations. All DISC results are available at www.disc2.dk.

In the DISC approach, an SLDS has sx aspects. speech recognition, speech generation,
naturd language undersanding and generation, didogue management, human factors, and
sysgem integration. In smple sysems, the naturd language understanding and generation
aspect may be non-existent but the five other aspects probably must be present for the system
to be an SLDS a dl (even low qudity human factors are human factors). From the point of
view of best practice, an SLDS should be the result of (a) correct choices among the available

options, technologicd and otherwise, within each aspect and (b) correct development
(including evauation) practice.

Based on analyss of 25 existing SLDSs and components (Bernsen et d. 1999), DISC has
developed a ‘grid’ best practice guide per aspect. Each grid defines a space of aspect-gecific
issues which the developer must, or may have to, address, primarily depending on the
complexity of the SLDS or component to be developed. When developing a didogue
manager, for ingance, the developer should congder if the didogue manager should provide
some form of graceful degradation in order to handle cases of repeasted user-system
communication error. For each issue, the currently avallable options are lad out in the grid
together with the pros and cons for choosing a particular option (cf. (@) aove). For instance,
feedback to the user is an important issue in didogue management. The grid offers two
options, i.e. process feedback and information feedback. Process feedback informs the user
that the sysem is ill working even if it takes some time to, eg., query the database
Information feedback dlows the user to verify that spoken input has been correctly
understood by the system. Both types of feedback can be provided in severd different ways
which are presented as options together with their pros and cons.

In addition to the aspect-specific grids and again based on the andysed exemplars, DISC has
developed a life-cycdle best practice guide per aspect (cf. (b) above). The current DISC
didogue enginesring life-cycle modd has two interrdated levels. At the overdl leve, and
assuming a generd iterative software enginegring life-cycdle modd, the modd is used in
developing and evduating entire SLDSs as wdl as individud SLDS components. At the more
detailed level, additional support is provided for addressing a particular aspect of an SLDS by
gecidisng the life-cycle to this aspect, i.e. by taking into account the particular grid issues
and evduation criteia which ae rdevant to that aspect, such as didogue manager
development.

4. Life-cycleissues, grid issues and evaluation criteria

This section describes the current gatus of the DISC dialogue engineering model. We take the
life-cycle issues as point of departure, integrate grid issues, add evauation criteria, and
describe the resulting did ogue engineering development and evauetion life-cycle.

4.1. Life-cycleissues

The didogue enginearing life-cycle may be depicted following the V-modd as having two
legs. One leg addresses the development phases. The grid issues must be addressed in these
phases. The second leg shows what is being evauated. Particular evaduation criteria, which
depend on the aspect consdered, are derived from the chosen grid issues and used at specified
points during evauation. Evauation is an integrd pat of the deveopment process and is
caried out throughout the life-cycle. What is being evauated depends on the paticular life-
cycle phase.

Figure 5 shows the five mgor development phases (the maintenance phase is not shown)
which are typicd to SLDSs, and the mgor evauation activities in focus during those phases.
It shoud be noted that smulation is frequently used in the development of (advanced)
SLDSs This is why smulation is mentioned as a separate (optiona) phase. Unlike the V-
modd in Figure 2, Figure 5 shows what to evduate in a particular phase but does not show
when a particular type of evauation is planned.

) » | Requirements
Analysis I specification evaluation

> Design specification
I evaluation

| Wizard of Oz-based
I evaluation

I
L

I Diagnostic evaluation

T sahility evwaluation

SLDE or component

Figure 5. The didogue engineering life-cycle phases apart from the maintenance

phase, and the overdl issuesto evduate.

Figure 5 focuses on software development phases and evauation. Documentation is not
consdered even though this is an important part of the development and evaluaion process.
Also, the figure does not show or relae to parameters, such as resources, skills and
unexpected problems which may drongly influence deveopment and evauation a any point
in the life-cycle, and which should therefore congtantly be monitored.

Figure 6 <hows the didogue enginegring life-cyde modd, induding life-cycle phases,
system/component evauation, document evauation, and monitoring of other key factors.
Documentation is assumed to develop aong with the sysem or component during the

individud life-cycle phases as described in more detail below.

Life-cycle System/component | Document evaluation M anagement factors
phase evaluation evaluation
Andyss Requirements Requirements %— 8 Deveopment time
specification gecification 3 Z | Personnel resources
evauation documentation g % Magtery of the
Desgn Desgn specification | Design specification 2 | development and
evauation documentation g evauation process
S’mylation Wizard-of-Ozbased | Wizard-of-Oz ; Problems during
(optiondl) evauation documentation S | development and
Construction Diagnostic System/component g evauation
evauation documentation ﬁ Management qudity
Integration Usability evduation |Ussr manud and
guide

Figure 6. The didogue enginearing life-cycle mode (gpart from maintenance).

A number of life-cycle issues pertain to one or more of the life-cycle phases in the Ieft-hand
column of Fgure 6. Smilarly, what is included in the development process must dso be
evauated and thus reflected in the evduation criteria to be used (see below). Figure 7 shows a
st of life-cycle issues which are generd and which are assumed by the didogue enginesring
model presented here. The issues al relate to the software being developed (generd,
congraints, ideas and preferences, and criteria), the documentation relaing to the software
(documentation and references), or the management factors which influence the development
process (management factors). The last group of issues in Figure 7 (post-development issues)
relate to the maintenance phase and will not be discussed any further. Evauation criteria will
be discussed ater.

10

General

Overall design goal(s) define the generd
objective(s) of the development process.
Congraints

Hardware constraints refer to any a priori
congraints on the hardware to be used in
the design process.

Software constraints refer to any a priori

congtraints as regards use of software €.g.

devdlopment platform or pre-exiding
modules or components).
Customer constraints ae condrants

imposed on the system/component by the
customer,

may
condraints.

if any. Cusomer congrants

include hardware or oftware
Organisational aspects address if and how
the syslem/component will have to fit into
some organisation or other.

Other constraints than hardware, software
and customer condraints may be imposed
on the systerm/component and influence the
devel opment process.

Ideas and preferences

Design ideas are ideas which developers
may wish to redise in the deveopment

process, such as to develop a generic

diaogue manager.
Developer preferences may impose
condraints on systerm/component

development which were not dictated from
esawhere. Developer preferences may
relate

to many different issues, eg.

preferred programming language.

11

Criteria

Realism criteria describe if the sysemy/
component will meet red user needs will
meet them better, in some sense to be
(chegper, efficiently,
fagter, other), than known dterndives, or if

explained more
the didogue manager is "just" meant for

exploring pecific
explaned, or if there are other redism

posshilities to be

criteriawhich should then be explained.
Functionality criteria concern which
functionalities the system/component
should have.

Usability criteria concern the usability
aspects of the system/component. Usability
criteria may be seen both from a system
developer’s and from an end-user’s point
of view. Usudly the main focus will be on
usability for end-users.

Documentation and references
Requirements specification documentation
addresses how the requirements
specification is documented.

Design specification documentation
addresses how the design specification is
documented.

Wizard-of-Oz documentation addresses the
documentation of the (partidly) smulated
System/componernt.

addresses the

implemented

System documentation
documentation of the

system/component.

User manual and guide concerns the
description of the system/component to its
USErs.

Development and evaluation process
description (including references) is used
to capture pecifications, choices and
decisons made, their judifications and
ther consequences and results The
description should include, eg.,
information on how requirements were
edablished, how the system/component
was devel oped and evaluated,
implementation issues, and tests done on
the system/component.

Management factors

Development time addresses the time
planned for development and the actud

Mastery of the devel opment and evaluation
process addresses the question of which
parts of the process the development team
has auffident magtery in advance and of
which parts they don’t have such mastery.
Problems during development and
evaluation should be described and
handled.

Management quality concerns the way in
which the project is managed.
Post-development issues

Portability addresses ease of portability.
Modifications concern what is required if
the system/component is to be modified.
Additions, customisation addresses how
additions to, and cugomisation of, the

sysem/component can and should be

time used. caried out, eg. if there is a drategy for
Personnel resources address the amount of
person months alocated to, and actualy

sent on, the devedopment of the

resource updates and if there is a tool to
enforce that the optimal sequence of
update stepsis followed.
system/component.

Figure 7. Issues addressed by the didogue engineering life-cycle modd.

Some life-cycle issues are important to severa development pheses whereas others are
redricted to a single phase as explained in more detall below. For each life-cycle issue a
number of details must be conddered, including the phasx(s) to which it primarily belongs,
evaduation methods to gpply, the influence of the issue on the SLDS or component, the
importance of taking it into account and possble effects of not addressng it, particular
difficulties relating to the issue, and people with mgor influence on the issue. Space does not
dlow us to address dl of these detalls Only the two firg-mentioned points will be discussed
below.

We digtinguish three categories of stakeholder in development: the procurer or customer, the
users, and the developers. Most SLDSs are custom-made software (although severa of ther

12

components are not) and therefore the customer aso plays an important role. In case of off-
the-shelf software, the development process roughly remains the same but the input from the
cusomer is not avalable, so developers have to manage without it, contribute the information
themselves or obtain it from representative users.

4.2. Grid issues specialising life-cycle issues

As mentioned in Section 3 we shdl use the didogue management aspect for grid illugtration.
Didogue management grid issues may be dructured into the following categories covering
the issues listed in parentheses (Bernsen and Dybkjagr 2000a):
god;
gydem varidies (multimodd systems induding speech, multilingua systems, and multi-
task, multi-user systems);
sysem speech and language (are the speech and language layers OK, do the speech and
language layers need support from the dialogue manager, and red-time requirements);
getting the user's meaning (task complexity, controlling user input, who should have the
initigtive, input prediction/prior focus, sub-task identification, and advanced linguigtic
processing);
communication (doman communication, meta-communication, other forms of
communication such as gredtings, expressons of meaning, i.e how is the meaning of
what has to be conveyed to the user expressed by the didogue manager, error loops and
graceful degradation, feedback, and closing the didogue); and
higory, users, implementation (dialogue histories, novice and expert users, user groups,
other relevant user properties, and implementation iSsUes).
Jointly with the systemvVcomponent-specific grid issues, the first four categories of life-cycle
issues in Figure 7 (generd, condraints, ideas and preferences, and criteria) determine the
software that is being developed. The life-cycle issues are generd but, taken together with the
grid issues, they am a a particular aspect of an SLDS. Let us look a some examples. The
didogue management grid issue categories from the above lig are referenced in parentheses.
The grid issues are described in detall at http://Amww.disc2.dk/dds'dnm/DMgrid.html and more
comprehensively in (Bernsen and Dybkjaa 20004).
The life-cycle issue of cusomer condraints covers condraints imposed on the
sysem/component by the customer. Customer congraints will typicdly indude grid issues.

13

Many different customer condraints may be imposed on didogue manager development. For
example, the customer may want the system-provided service backed up by human operator
falback during the company’ s opening hours.

Design ideas are ideas which the developers want to redise in the development process. For
didogue management, examples of design idess involving particular grid issues could be to
explore internd didogue manager modularity (grid: implementation), invedtigate different
ways in which the didogue manager can support natura language understanding (system
goeech and language), explore system co-operaivity in didogue (communication),
experiment with different didogue control drategies (getting the users meaning), or explore
ways in which to exploit contextud information to improve the didogue (higtory, users,
implementation).

Usahility criteria may be viewed both from a sysem developer’s and from an end-user’s point
of view. Usudly the man focus will be on usdility for end-users. End-usars will not
experience the didogue manager as a stand-aone component but only as part of an entire
sysem. To a large extent, however, it is the didogue manager which is responsble for how
satisfactory the SLDS is to use. Grid issues which may generate usability criteria include, eg.,
naturd, flexible and robugt didogue, which has to do with initiative, feedback, error loops and
graceful degradetion, hidtories, user properties, ec. (getting the usears meaning,
communication, and hidory, usars and implementation), sufficent meta-communicative
facilities (communication), and users backgrounds (history, users, implementation).

The firg four categories of life-cycle issues in Figure 7 and the grid issues which become
subsumed by them, are typicdly in focus dready in the anadyss phase or, a the lates, in the
design phase, depending on whether they are brought in as requirements or as pat of the
desgn specification. Some grid issues may be involved in the andyss phase as pat of a life-
cycle issue whereas others are added to that life-cycle issue in the design phase. For indance,
meta-communication may be a grid issue brought in as a usdility condrant in the
requirements specification, i.e. in the andyss phase, whereas, eg., error loops and graceful
degradation may be added as another usability congraint in the design phase as pat of the
design specification. Overdl goas and customer condraints are usudly specified in the
andyss phase whereas developer preferences typicaly belong to the design phase. The
remaning life-cycle issues (firsd four categories) may be specified during andyss and/or
during design, depending on their importance in the actua development process. All the life-
cycle issues from the firgt four categories continue to play a role not only in andyss and/or

desgn but adso in later phases i.e in amulation, congruction, and integration. These later

14

phases serve to progress the development of a system or component n accordance with the
requirements and design specifications developed during andysis and design.

The documentation issues, on the other hand, are related to a particular phase, cf. Figure 6,
except for the last one which is an accumulating document throughout development across
phases and iterations.

The management issues in Figures 6 and 7 do not belong to any specific phase but must be
monitored throughout development. Development time and personnd resources may appear
as, eg., customer condraints ad be pat of the requirements specification. Mastery of the
development and evaluation process may be a factor which influences the resources set asde
in tems of time and personnd and which therefore dso influences the reguirements
specifiction in an indirect way. Throughout the development process, it is important to
monitor that the resource budget (time and personnel) holds and, if not, take the necessary
actions immediady. Problems during deveopment and evduation may influence the
resource budget. It is therefore important to keep an eye on such problems and consider
solutions and consegquences as soon as they are gpotted. Management qudlity is determined by
how wedl monitoring and management of the development and evauation process is done,

whether the appropriate actions are taken, and whether thisis done in atimely fashion.

4.3. Evaluation criteria derived from grid issues

Since evauation is an integral part of the development process, we aso need to take a look at
evauation criteria ad the evauation process. Evduation criteria are aspect-specific in the
same way as grid issues are aspect-specific.

An interesting observation made in DISC is that, based on the grid issues, it is possble to
derive a st of evaudion criteria per aspect. Suppose that, for ingtance, the didogue
management grid includes 24 issues for consderation by didogue manager developers, such
as which types of didogue histories to include in a particular gpplication. If the SLDS to be
developed is a reaively smple one, not dl of the 24 issues are likely to be rdevant, so the
developers sdlect options within, say, 14 of the issues and ignore the remaining issues because
these are relevant only to more sophigticated didogue managers than presently needed. In this
case, the developers must gpply evduation criteria to 14 chosen didogue manager options in
order to do a complete evaluation of the didogue manager aspect of the application. Process
and results of generating a complete set of evauation criteria for human factors in SLDSs are

presented in (Dybkjae and Bernsen 2000).

15

Knowing what to evduate, is not enough, however. How to evduate is just as important. To
follow best development practice, developers have to evduate therr solution with respect to a
chosen option at the right time(s) and in the right way(s). Thus, how to evauate is a matter of
goplying a paticular evduation criterion correctly a the right stages during the development
life-cycle.

Given that the developer knows, per SLDS aspect and for the particular gpplication a hand,
what to evduate, such as how wel the didogue manager handles error loops and graceful
degradation, focus can shift to how to do the evaduation. In DISC, we have iterdivey
developed an evauation template to support the ‘how’ of evauation. The template is a modd
of what the developer needs to know in order to apply an evauation criterion to a particular
property of an SLDS or component, such as the histories used by the didogue manager. This
knowledge is specified by the template€'s ten entries including what is being evaduated, system
pat evduated, type of evduation, method(s) of evauation, symptoms to look for, life-cycle
phase(s), importance of evaudion, difficulty of evauation, cost of evauaion, and tools.
Detals on the evduation template can be found in (Bernsen and Dybkjeg 2000b). Examples
of filled templates can be found a the DISC webste, eg. http://mwww.disc2.dk/dds/dm/-
DMevddetail.html.

4.4. Evaluation integrated into the development life-cycle

This section briefly discusses evauation and evaduation methods as pat of the development
life-cycle. It should be noted that the evauation criteria described above which were derived
from the grid issues, only form part of what has to be evduated. The grid-derived evaduation
criteria only relate to the software and not to, e.g., documentation or the development process
itsdf.

In the analysis phase, the overdl gods of the system/component as well as the most important
congraints, ideas and preferences, and criteria, cf. Figure 7, are established and described in a
requirements specification. This is done in collaboration with the procurer (if any) and the
sysem end-users. An important activity is to specify the evduation criteria which the find
sysem must saisfy to be accepted by, eg., the procurer. A first evauation is made of the
feashility of the requirements specification given condraints and resources. The requirements
specification and any additiona documentation is produced and evauated as to sufficiency
and dlarity.

16

During the design phase, a design specification based on the requirements specification and
other sources is worked out, adding additional congtraints, idess, preferences and criteria, and
detalling these to a leved sufficient to form the basis of smulaion or condruction. In pardld
and dosdy interacting with this activity, a dedgn andydss evduation takes place. Desgn and
desgn andyss evaudion involve usng experience and common sense, thinking hard when
exploring the desgn space, doing wakthroughs of modes, comparing with amilar systems,
browsing the literature, applying exiging theory, guiddines and design support tools, if any,
involving experts and future users, etc. The completeness of the design specification may be
judged by checking whether dl relevant entries in the DISC “grid(s)” have been consdered.
Dedgn andyss evauaion dso condsts in checking whether the design gods and condraints
are sound, non-contradictory and feasble given the resources avalable. The documentation
produced in this phase includes the design specification and any additiond documents which
have been used or produced. For instance, literature should be referenced and walkthroughs
and ther andyss should be documented. Documentation evaluation condsts in judging
whether the desgn specification is appropriatdy represented and whether dl reevant
documents have been included.

The simulation phase is an optiond pat of SLDSs development. Typicdly, smulations are
mede usng the Wizard-of-Oz (WOZ) smulation methodology in which the sysem or some
of its components as specified during design are being Smulated by one or more humans with
subjects who should preferably believe that they are interacting with a red system (Fraser and
Gilbert 1991, Bernsen et a. 1998). The purpose is to gather data early on concerning how
well the sysem or component might work, which means that andyss and evduation of WOZ
data is an important part of this phase. The advantage of early smulation is that, if done
extendvely and andysed carefully, a large number of problems with the desgn concepts as
evidenced by obsarved phenomena in the Smulated human-system interactions can be
spotted, diagnosed, and removed early in the development process. The disadvantage is the
cost of seiting up and running the smulations, and of andysing the generated data. WOZ data
gathering often incdudes use of quedionnaires and interviews for investigating subjects
opinions of the smulated SLDS or component. These may provide crucid ingghts into the
users perception of the system or component and help capture user observations which might
have implications for virtudly any kind of deficiency. The documentation produced in this
phase addresses the preparation and set-up of the WOZ smulation, the actud experiments
caried out, the andyss of the collected data, and the implications for the design specification

17

and the next WOZ iteration (if any). Documentation evauation focuses on whether the WOZ
process is adequately represented.

In the construction phase, the specified sysem or component is being implemented and
debugged. During debugging, two typica types of diagnogtic test are glasshbox tets and
blackbox tests. In a glassbox tedt, the internd system representation is ingpected. The
evauator should ensure that reasonable test suites, i.e. data sets, are congructed which will
activate dl loops and conditions of the program being tested. In a blackbox tet, only input to,
and output from, the program are available to the evauator. Test suites are congructed in
accordance with the requirements and desgn specifications, and dong with a specification of
the expected output. Expected and actua output are compared and deviaions must be
explained. In generd, ether there is a bug in the program or the expectation is incorrect. Bugs
must be corrected and the test run again. It may be added that the blackbox test may aso
suggest that the expected output, even if forthcoming, is flawed, leading to partiad redesign
and illudrating the iterative nature of development. Test suites should include fully acceptable
input as well as borderline cases to test if the program reacts reasonably and does not bresk
down in case of input error. The documentation produced in the congtruction phase includes
comments in the code, proper descriptions of the implemented system or component
architecture, modules and interfaces, and test data and results. Documentation evauation
congstsin checking whether this information is provided in an acceptable form.

The outcome of the integration phase is the find sysem or component. The find integration
of sysem or component parts is done in this phase. The integrated system is tested thoroughly
and, when judged to satisfy the requirements, delivered to the customer. The tests involve
interaction between the sysem and red users, ether in controlled experiments with sdlected
users and scenarios which they have to peform, or in fidd gudies in which the SLDS or
component is being exposed to uncontrolled user interaction. The collected user-system
interaction data is anadysed and used to evaluae the sysem or component. The user-system
interaction data may be complemented by data from questionnaires and interviews. The man
difference is that in the integration phase there should be far fewer problems to diagnose and
solve. The find test will often be the acceptance test in which the procurer (if any) tests the
system or component according to the evauation criteria specified early on (cf. above) to
verify that it meets the agreed requirements. The documentation in this phase includes a user
manua and guide (if any), descriptions of preparations and set-up of controlled user tests
and/or field egs, and of the actua tests carried out, analysis of the collected data and possbly

18

of the implicaions for the implemented sysem. Documentation evauaion condds in
checking whether the documentation is provided and adequate.

Maintenance is the final (and longest) phase in the life-cycle. The sysem or component is in
actud use during this phase and mantenance includes, eg., the correction of erors
functionality improvements, and extensonsto provide new services.

During the life-cycle phases lisged in Figure 6, a globa description of the development and
evauation process should be worked out, cf. Figure 7. This document should reference dl
materids produced and provide a description of the process. The document is useful during
maintenance by providing easy access to information, and it can be invauable when planning
new projects. It is dso useful for new members joining the development team after the project
has started.

Moreover, parameters which cannot be fully controlled in advance and which may negdivey
influence the devdopment and evduation process a any time in the life-cycle, should be
monitored regularly throughout and action taken as early as possble when needed, cf. the
management factorsin Figure 7.

Any of the phases in Figure 6 may be iterated as needed. For example, the smulation phase
will typicdly iterate with the dedgn phase a number of times in order to get the design
specification right, and the integration phase will normaly reved problems which require
(minor) adjustments to the code, thus iterating with the congtruction phase. Moreover, phases
my overlgp, 0 tha, eg., WOZ planning and smulation may be initiated whils the desgn
specification is being worked out.

5. Conclusion

We have presented an extended DISC didogue engineering modd which ams to support
developers of SLDSs and components by providing a life-cycle modd which is talored to the
needs of SLDS devdopment and evduation. The life-cycle modd tekes a generd, iterative
life-cycle modd as its darting-point and specialises the modd through aspect-specific grid
issues, i.e. properties of SLDSs and their components, as wdl as evauation criteria and
methods. The model presented might be tranderable to specidised software engineering
models in other areas of speech and language enginering and beyond. The modd’s
dependence on a state-of-the-art ‘grid means that the modd has to be continuoudy updated
in order to take into account novel technicad developments as well as ther usability

19

implications. In the area of SLDSs, new technicd deveopments will include, among others,
multimodd didogue sysems which include spoken didogue, web-based spoken didogue
systems, and the taking of a mgor step beyond task-oriented SLDSs towards domain-oriented
sysems which no longer enable particular tasks but dlow free-form conversation about any

topic in adomain.
Acknowledgements

We gratefully acknowledge vaduable comments from Hans Dybkjeg on a draft verdon of this
paper.

Refer ences

Beck, K. 1999a. Extreme Programming Explained. Embrace Change. Addison-Wedey.

Beck, K. 1999b. Embracing Change with Extreme Programming. |EEE Computer, October,
70-77.

Bernsen, N. O., Dybkjaa, H. and Dybkjaa, L. 1998. Designing Interactive Speech Systems.
From First Ideasto User Testing. Springer Verlag.

Bernsen, N. O. and Dybkjaa, L. 2000a. From single word to naturd diaogue. Invited book
chepter in Marvin V. Zekowitz (Ed.): Advances in Computers, Vol. 52. London: Academic
Press, 2000, 267-327.

Bernsen, N. O. and Dybkjaa, L. 2000b. A methodology for evauaing spoken language
didogue systems and their components. Proceedings of the Second International Conference
on Language Resources and Evaluation (LREC 2000), Athens, 183-188.

Bernsen, N. O., Dybkjaa, L. and Heid, U. 1999. Current practice in the development and
evaduation of spoken language didogue sysems. Proceedings of Eurospeech’99, Budapest,
Hungary, 1147-1150.

Boehm, B. W. 1988. A spird modd of software development and enhancement. |EEE
Computer, 21 (5), 61-72.

Dybkjaa, L. and Bernsen, N. O. 2000. Usahility issues in spoken language didogue systems.
Natural Language Engineering, Specid Issue on Best Practice in Spoken Language Didogue
System Engineering, 6 (3,4), 243-272.

20

Fraser, N. M. and Gilbert, G. N. 1991. Smulating speech sysems. Computer Speech and
Language 5, 81-99.

Muller, P-A. 1997. Instant UML. Wrox Press Ltd., Canada.

Pressman, R. 1997. Software Engineering: A Practitioner's Approach, European Edition.
McGraw Hill.

Royce, W. W. 1970. Managing the Deveopment of Lage Software Systems. Proc.
WESTCON, San Francisco CA.

Sommerville, 1. 1992. Software Engineering. Fourth Edition, AddisonWedey, (1992 or
newer edition).

21

