
Towards Corpus Annotation Standards
The MATE Workbench

Laila Dybkjær and Niels Ole Bernsen

Natural Interactive Systems Laboratory
Science Park 10, 5230 Odense M, Denmark

Email: laila@nis.sdu.dk, nob@nis.sdu.dk
Tel: +45 65 50 35 53, +45 65 50 35 44, Fax: +45 63 15 72 24

ABSTRACT

This paper describes the European MATE project and its work
towards speech corpus annotation standards. Focus is on the
MATE workbench which is thoroughly described and
illustrated.

1. INTRODUCTION

The aim of the European Telematics project MATE (Multilevel
Annotation Tools Engineering) has been to facilitate the use and
reuse of spoken language resources, coding schemes and tools
by addressing theoretical issues and implementing practical
solutions. MATE was launched in 1998 in response to the
increasing need - not least in the area of spoken language
dialogue systems research and development - for tools and
standardisation efforts in support of efficient markup of spoken
dialogue corpora at multiple levels.

The main results of the project are the MATE markup
framework which bridges between the theoretical and the
practical activities of MATE and is proposed as a standard for
the definition and representation of markup for spoken dialogue
corpora (Dybkjær and Bernsen 2000b), and the MATE
workbench which supports the use of the markup framework.
Even if the project has formally come to an end, the project
consortium has continued funding for improving the workbench
and new versions continue to appear. The newest version of the
software can always be downloaded from the MATE web site at
http://mate.nis.sdu.dk. Both an executable version and the
source code is available, the latter under the GNU open source
LGP license.

A discussion forum has been set up at the MATE web site for
asking questions and sharing experience on the workbench, and
for adding new tools to the MATE workbench to enhance its
functionality.

In the following, Section 2 briefly describes the theoretical
approach of MATE, Section 3 provides a detailed walkthrough
of the MATE workbench, and Section 4 mentions related work.

2. THEORETICAL BACKGROUND

To provide a solid basis for the coding standard to be proposed
by MATE, more than sixty existing coding schemes belonging

to five different coding levels (i.e. prosody, (morpho-) syntax,
co-reference, dialogue acts, and communication problems) and
their cross-level interaction were reviewed (Klein et al. 1998).
The collected information served as background for establishing
the MATE markup framework (Dybkjær et al. 1998, Dybkjær
and Bernsen 2000b). In MATE, a coding level is some level of
abstraction at which to conceptualise, tag, analyse, and retrieve
information inherent in language corpora.

The MATE markup framework is a conceptual model which
basically prescribes (i) how files are structured, for instance to
enable multi-level annotation, (ii) how tag sets are represented
in terms of elements and attributes, and (iii) how to provide
essential information on markup, semantics, coding purpose etc.

The central concept of the MATE markup framework is the
coding module. A coding module is an extended kind of coding
scheme which prescribes what constitutes a coding, including
the representation of markup and the relations to other codings.
Coding modules incorporate (i), (ii) and (iii) above. Thus, the
MATE coding module is a proposal for a standard description of
coding schemes.

For each of the above-mentioned five annotation levels and the
issues to do with cross-level annotation, one or several of the
reviewed coding schemes were adopted as starting-points for the
definition, following the MATE markup framework, of best
practice coding schemes for implementation in the MATE
workbench (Mengel et al. 2000).

3. THE MATE WORKBENCH

The MATE workbench (Isard et al. 1998, Isard et al. 2000,
Dybkjær and Bernsen 2000a) is a software tool set which
supports the MATE markup framework, incorporates the MATE
best practice coding schemes, and enables users to annotate
corpora and extract information about annotated corpora via a
user-friendly interface. The workbench is in continued
development and, although the full functionality and desired
user-friendliness has not yet been achieved, there is already
considerable interest among colleagues from around the world
in using the MATE workbench.

The workbench is implemented in Java. It has been tested on
Unix (Solaris) and Windows (NT and 98) but should run on any
platform for which Java 1.2 or newer is available. The
workbench has a modular architecture which facilitates the
addition of new modules and new tool functionality by its users.

XML is used for internal file representation. Stylesheets are
used for specifying the visual presentation of data to users.
Stylesheets are written in the MATE Stylesheet Language
(MSL). The emerging standard in this area is XSLT. XSLT,
however, was not fully defined when the workbench was being
designed, and lacked various necessary functionalities at the
time. It was therefore decided to implement MSL which uses
the MATE query language but is otherwise similar to XSLT.

In the following, we describe and illustrate the MATE
workbench functionalities.

3.1 Getting started

As mentioned, the MATE workbench can be downloaded from
the MATE web site at http://mate.nis.sdu.dk. The download
page describes how to start the workbench from a command
tool. Starting the workbench will result in the following two
windows being opened. The first window (Figure 1) allows the
user to open new project windows (Figure 2), access available
tools, such as the coding module editor (Figure 5), and access
the online help function.

The second window (Figure 2) shows example projects which
include best practice coding schemes and annotated examples
for a number of different annotation levels.

Figure 1. The control window.

Figure 2. The projects window.

3.2 Annotation

The two main functionalities of the MATE workbench are
support for annotation of spoken dialogue corpora and linguistic
data, and information extraction from annotated corpora. The
workbench annotation support is described in the following.

3.2.1 Best practice coding schemes

Ready-to-use best practice coding schemes are included for
most of the coding levels addressed by MATE. Prosody is not
yet included. Stylesheets allow the user to view and annotate
files in an appropriate way using any of the implemented best
practice schemes. Example dialogues are provided which
illustrate how a tagged dialogue and the accompanying tag set
will be shown when a particular best practice scheme is being
applied. Internally in the workbench, an annotated dialogue is
represented as a set of references to the transcription of the
dialogue and possibly to other coding files. By default, the
transcription refers to timeline information. The two windows in
Figures 3 and 4 show annotation based on the MATE MapTask
scheme and the MATE communication problems scheme,
respectively. Figures 3 and 4 aptly illustrate the very different
display requirements imposed by different coding schemes.

Clicking on the green ‘PLAY’ button in the Map Task window
in Figure 3 will result in the audio file corresponding to the
transcribed turn being played. The giver and the follower are the
two speakers. Each speaker turn can be annotated with a speech
act chosen from the list on the left by selecting the speaker and
then clicking on the tag to be assigned. For example, the second
giver utterance has been annotated with the ‘instruct’ dialogue
act.

In the communication problems window in Figure 4 the
orthographically transcribed dialogue is shown in the upper left-
hand panel. To support the coder, guidelines for cooperative
dialogue are shown in abbreviated form in the upper right-hand
panel. Types of violation of particular guidelines are
incrementally added by the coder in the lower right-hand panel.
This panel is empty when annotation starts. The blue markup in
the dialogue refers to the types of violation described in the
lower right-hand panel and the violations themselves refer to the
guidelines. The lower left-hand panel shows annotator's notes.
Again, this panel is empty when annotation starts. Notes can be
added whenever the annotator needs to add an explanation of,
e.g., why something went wrong in the dialogue so as to cause a
communication problem.

There is no example coding module for transcription in the
MATE workbench. Instead, a converter from Transcriber format
(http://www.etca.fr/CTA/gip/Projets/Transcriber/) to MATE
format enables transcriptions made using Transcriber to be
exported to MATE format and annotated using the MATE
workbench.

3.2.2 Adding a new coding module

Users may add new coding modules (coding schemes)
themselves for existing or new coding levels via the coding
module editor, cf. Figure 5. In order for a coding scheme and
the dialogues annotated using it to be usable and understandable
by people other than its creator, some key information must be
provided. The MATE coding module which is the standard
coding scheme description format proposed by MATE, serves to
capture this information. A coding module includes the ten
items shown in Figure 5. It prescribes what constitutes a coding,
including markup representation and relations to other codings
(module references).

Figure 3. Annotation using the MATE Map Task scheme.

Figure 4. Annotation using the MATE communication problems scheme.

Figure 5. The coding module editor.

3.2.3 Adding a new project

A new MATE project folder can be created (Figure 6) via the
‘File’ menu in the project window in Figure 2.

Figure 6. Creating a new project.

3.2.4 Adding a new file

Figure 7 shows the browsing for an existing file to be added to a
project folder. The window is invoked from the ‘Edit Project’
menu in the project window in Figure 2. New files in a
particular format may be created (Figure 8) via the same menu
and files may also be removed via this menu. As a minimum, a
new XML file which is being created must be given a name, and
the DTD or coding module to be applied must be specified.
However, it is recommended that further header information is
provided as well, cf. Figure 9.

Figure 7. Browsing to add a file to a project folder.

Figure 8. Creating a new file.

Figure 9. Creating a new XML file.

3.2.5 Listening to audio files

Audio files can be selected in the projects window (Figure 2)
and played using the MATE audio tool. The window in Figure
10 will then appear displaying the sound file as a waveform.
The audio tool might be used during transcription if a user has
added an appropriate transcription coding module. As it stands,
the audio tool acts as a support tool during annotation and
annotation review. For instance, when annotating
communication problems there is sometimes a need for listening
to the speech file in order to disambiguate an utterance and
diagnose what went wrong.

Figure 10. The MATE audio tool.

Figure 11. The edit option.

3.2.6 Editing a file

The MATE workbench uses three basic file types. Coding files
are XML files. Stylesheets are MSL files used for visualisation
of codings and for annotation support. Runfiles specify which
stylesheet to apply to which XML file. Any XML, MSL or
runfile in a MATE project folder can be opened and edited (cf.
Figures 12-14) by selecting the file and clicking on ‘Edit’ in the
projects window, cf. Figure 11.

Figure 12. Editing an XML file.

.

Figure 13. Editing a stylesheet.

Figure 14. Editing a runfile.

3.2.7 Import from and export to other file
formats

Files may be imported from other formats to XML. For the
moment, conversion from XLabels and BAS Partitur to XML is
enabled. New converters can easily be added, including
converters which export from XML to other formats, such as
HTML. Figure 15 shows import from BAS Partitur.

Figure 15. Import from BAS Partitur to XML.

3.3 Extracting information from annotated
corpora

Once a corpus has been annotated, it must be possible to extract
information from it for many different purposes. The MATE
query tool is available for selecting the document(s) to be
queried and for specifying the information to be subjected to a
query, cf. Figure 16 (Isard et al. 2000). The query tool is
activated from the tools menu in a coding window, cf. Figures 3
and 4. The information which can be extracted includes
statistical information. Results are shown as illustrated in Figure
17. The interface for displaying results is not yet finalised. This
is why the query results window for the moment only shows the
raw XML data extracted from the queried XML file.

Figure 16. The query window.

Figure 17. Results of a violation types query, cf. Figure 4.

Figure 18. The help window.

3.4 Getting help

An online help facility may be consulted at any time during use
of the MATE workbench. Figure 18 shows the topmost help
page for the coding module editor. Explanation of particular
coding schemes is available from the help menu in the coding
window, cf. Figures 3 and 4.

3.5 Usability

Usability is a key concern in MATE. The focus on usability is
reflected in the coding module concept and in the workbench
coding module editor. The coding module prescribes a
comprehensible standard description to be made of any coding
scheme. The coding module editor makes it easy to specify
coding modules – not least their markup declarations - also for
non XML-literate users. The editor enables the user to specify
the markup declaration for a new coding module almost without
requiring any knowledge of the underlying XML representation.
The coding module editor automatically generates a DTD which
is then used internally by the workbench. The coding module
editor thus represents a major step forward compared to tools
which require users to write DTDs.

There are still a couple of major usability issues to be solved,
however. One issue is a user-friendly way of creating new
coding visualisations. Writing style sheets for the workbench is
cumbersome and requires programming skills because no editor
is provided. The user must edit the raw style sheet code (or
write new code), cf. Figure 13. It is high on our wishlist to
enable users to easily define new visualisations. This may be
done either by providing a stylesheet editor comparable to the
coding module editor as regards ease of use, or, alternatively,
through a completely new interface concept replacing the need
for stylesheets and enabling users to easily define new
visualisations.

A second major issue is the interface to the query tool and its
results. As for the latter, Figure 17 makes it evident that
usability improvements are needed. The query results could be
presented far more transparently using an appropriate style
sheet. This is also on the MATE to-do list. So is a more
comprehensible interface for expressing queries than the present
one (Figure 16).

4. STATE OF THE ART

Several frameworks for speech corpus annotation have been
proposed but to our knowledge the MATE markup framework is
still the more comprehensive framework around. An example of
another framework is the annotation framework recently
proposed by Bird and Liberman (1999) which is based on
annotation graphs. These are now being used in the ATLAS
project (Bird et al. 2000) and in the Transcriber tool (Geoffrois
et al. 2000). The annotation graphs serve as an intermediate
representation layer between interface and internal data
structures. Whilst Bird and Liberman do not consider coding
modules or discuss the interface from a usability point of view,
they present detailed considerations concerning time line
representation and time line reference. The two frameworks
may, indeed, turn out to complement each other nicely.

Acknowledgements

We gratefully acknowledge the support for the MATE project
provided by the European Commission’s Telematics/Language
Engineering Programme. We would also like to thank all MATE
partners. Without the very considerable joint efforts of the
project consortium it would not have been possible to build the
MATE workbench.

5. REFERENCES

The MATE workbench is available in executable version
and under the GNU open source LGP license from the
MATE web site at http://mate.nis.sdu.dk. MATE reports
are also available from this web site.

Bird, S. and Liberman, M.: A Formal Framework for
Linguistic Annotation. Technical Report MS-CIS-99-01.
Department of Computer and Information Science,
University of Pennsylvania, 1999.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun, C.
and Liberman, M.: ATLAS: A Flexible and Extensible
Architecture for Linguistic Annotation. Proceedings of
the 2nd International Conference on Language
Resources and Evaluation (LREC 2000), Athens, 2000,
1699-1706.

Dybkjær, L. and Bernsen, N. O.: The MATE Workbench.
Proceedings of the LREC’2000 workshop on Data
Architectures and Software Support for Large Corpora,
Athens, 2000, 33-37 (a).

Dybkjær, L. and Bernsen, N. O.: The MATE Markup
Framework. Proceedings of the 1st SIGdial Workshop on
Discourse and Dialogue, Hong Kong, 2000 (b).

Dybkjær, L., Bernsen, N. O., Dybkjær, H., McKelvie, D.
and Mengel, A.: The MATE Markup Framework.
MATE Deliverable D1.2, 1998.

Geoffrois, E., Barras, C., Bird, S. and Wu, Z.: Transcribing
with Annotation Graphs. Proceedings of the 2nd
International Conference on Language Resources and
Evaluation (LREC 2000), Athens, 2000, 1517-1521.

Isard, A., McKelvie, D., Cappelli, B., Dybkjær, L., Evert,S.,
Fitschen, A., Heid, U., Kipp, M., Klein, M., Mengel, A.,
Møller, M. B. and Reithinger, N.: Specification of Work-
bench Architecture. MATE Deliverable D3.1, 1998.

Isard, A., McKelvie, D., Mengel, A., Møller, M. B., Grosse,
M. and Olsen, M. V.: Data Structures and APIs for the
MATE Workbench. MATE Deliverable D3.2, 2000.

Klein, M., Bernsen, N. O., Davies, S., Dybkjær, L., Garrido,
J., Kasch, H., Mengel, A., Pirrelli, V., Poesio, M.,
Quazza, S. and Soria, C.: Supported Coding Schemes.
MATE Deliverable D1.1, 1998.

Mengel, A., Dybkjær, L., Garrido, J., Heid, U., Klein, M.,
Pirrelli, V., Poesio, M., Quazza, S., Schiffrin, A. and
Soria, C.: MATE Dialogue Annotation Guidelines.
MATE Deliverable D2.1, 2000.

